
mutapath
Release 0.17.0

'matfax'

Jul 11, 2023

CONTENTS

1 MutaPath Class 3

2 Path Class 5

3 Locks 7

4 Hashing 9
4.1 Documentation . 9
4.2 Indices and tables . 100

Index 101

i

ii

mutapath, Release 0.17.0

This library is for you if you are also annoyed that there is no mutable pathlib wrapper for use cases in which paths are
often changed. mutapath solves this by wrapping both, the Python 3 pathlib library, and the alternate path library, and
providing a mutable context manager for them.

CONTENTS 1

https://github.com/matfax/mutapath/actions
https://codecov.io/gh/matfax/mutapath
https://mutapath.readthedocs.io/en/latest/?badge=latest
https://github.com/matfax/mutapath/issues/270
https://libraries.io/pypi/mutapath
https://www.codefactor.io/repository/github/matfax/mutapath
https://github.com/PyCQA/bandit
https://pypi.org/project/mutapath/
https://pypi.org/project/mutapath/
https://pypistats.org/packages/mutapath
https://github.com/matfax/mutapath/releases
https://github.com/matfax/mutapath/commits/main
https://github.com/matfax/mutapath/blob/main/LICENSE
https://pypi.org/project/path/

mutapath, Release 0.17.0

2 CONTENTS

CHAPTER

ONE

MUTAPATH CLASS

The MutaPath Class allows direct mutation of its attributes at any time, just as any mutable object. Once a file operation
is called that is intended to modify its path, the underlying path is also mutated.

>>> from mutapath import MutaPath

>>> folder = MutaPath("/home/joe/doe/folder/sub")
>>> folder
Path('/home/joe/doe/folder/sub')

>>> folder.name = "top"
>>> folder
Path('/home/joe/doe/folder/top')

>>> next = MutaPath("/home/joe/doe/folder/next")
>>> next
Path('/home/joe/doe/folder/next')

>>> next.rename(folder)
>>> next
Path('/home/joe/doe/folder/top')
>>> next.exists()
True
>>> Path('/home/joe/doe/folder/sub').exists()
False

3

mutapath, Release 0.17.0

4 Chapter 1. MutaPath Class

CHAPTER

TWO

PATH CLASS

This class is immutable by default, just as the pathlib.Path. However, it allows to open a editing context via
mutate(). Moreover, there are additional contexts for file operations. They update the file and its path while closing
the context. If the file operations don’t succeed, they throw an exception and fall back to the original path value.

>>> from mutapath import Path

>>> folder = Path("/home/joe/doe/folder/sub")
>>> folder
Path('/home/joe/doe/folder/sub')

>>> folder.name = "top"
AttributeError: mutapath.Path is an immutable class, unless mutate() context is used.
>>> folder
Path('/home/joe/doe/folder/sub')

>>> with folder.mutate() as m:
... m.name = "top"
>>> folder
Path('/home/joe/doe/folder/top')

>>> next = Path("/home/joe/doe/folder/next")
>>> next.copy(folder)
>>> next
Path('/home/joe/doe/folder/next')
>>> folder.exists()
True
>>> folder.remove()

>>> with next.renaming() as m:
... m.stem = folder.stem
... m.suffix = ".txt"
>>> next
Path("/home/joe/doe/folder/sub.txt")
>>> next.exists()
True
>>> next.with_name("next").exists()
False

For more in-depth examples, check the tests folder.

5

mutapath, Release 0.17.0

6 Chapter 2. Path Class

CHAPTER

THREE

LOCKS

Soft Locks can easily be accessed via the lazy lock property. Moreover, the mutable context managers in Path (i.e.,
renaming, moving, copying) allow implicit locking. The lock object is cached as long as the file is not mutated.
Once the lock is mutated, it is released and regenerated, respecting the new file name.

>>> my_path = Path('/home/doe/folder/sub')
>>> with my_path.lock:
... my_path.write_text("I can write")

7

mutapath, Release 0.17.0

8 Chapter 3. Locks

CHAPTER

FOUR

HASHING

mutapath paths are hashable by caching the generated hash the first time it is accessed. However, it also adds a warning
so that unintended hash usage is avoided. Once mutated after that, the generated hashes don’t provide collision detection
in binary trees anymore. Don’t use them in sets or as keys in dicts. Use the explicit string representation instead, to
make the hashing input transparent.

>>> p = Path("/home")
>>> hash(p)
1083235232
>>> hash(Path("/home")) == hash(p)
True
>>> with p.mutate() as m:
... m.name = "home4"
>>> hash(p) # same hash
1083235232
>>> hash(Path("/home")) == hash(p) # they are not equal anymore
True

4.1 Documentation

Path ([contained, posix, string_repr]) Immutable Path
MutaPath ([contained, posix, string_repr]) Mutable Path
PathException Exception about inconsistencies between the virtual path

and the real file system.
DummyFileLock(lock_file[, timeout, mode, ...]) Create a new lock object.

4.1.1 mutapath.Path

class mutapath.Path(contained: Path | Path | PurePath | str = '', *, posix: bool | None = None, string_repr: bool
| None = None)

Bases: SerializableType

Immutable Path

__init__(contained: Path | Path | PurePath | str = '', *, posix: bool | None = None, string_repr: bool | None
= None)

9

https://path.readthedocs.io/en/stable/api.html#path.Path
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://path.readthedocs.io/en/stable/api.html#path.Path
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

mutapath, Release 0.17.0

Methods

absolute() Return an absolute version of this path.
abspath () Return an absolute path.
access(mode) Return True if current user has access to this path.
as_posix() Return the string representation of the path with for-

ward (/) slashes.
as_uri() Return the path as a 'file' URI.
basename()

See also:
name, os.path.basename()

capitalize() Return a capitalized version of the string.
casefold() Return a version of the string suitable for caseless

comparisons.
cd() Change the current working directory to the specified

path.
center(width[, fillchar]) Return a centered string of length width.
chdir() Change the current working directory to the specified

path.
chmod(mode) Set the mode.
chown([uid, gid]) Change the owner and group by names rather than the

uid or gid numbers.
chroot() Change root directory to path.
chunks(size, *args, **kwargs) Returns a generator yielding chunks of the file, so it

can
clone(contained) Clone this path with a new given wrapped path rep-

resentation, having the same remaining attributes.
copy(dst, *[, follow_symlinks]) Copy data and mode bits ("cp src dst").
copy2(dst, *[, follow_symlinks]) Copy data and metadata.
copyfile(dst, *[, follow_symlinks]) Copy data from src to dst in the most efficient way

possible.
copying([lock, timeout, method]) Create a copying context for this immutable path.
copymode(dst, *[, follow_symlinks]) Copy mode bits from src to dst.
copystat(dst, *[, follow_symlinks]) Copy file metadata
copytree(dst[, symlinks, ignore, ...]) Recursively copy a directory tree and return the des-

tination directory.
count(sub[, start[, end]]) Return the number of non-overlapping occurrences of

substring sub in string S[start:end].
dirs() The elements of the list are Path objects.
encode([encoding, errors]) Encode the string using the codec registered for en-

coding.
endswith (suffix[, start[, end]]) Return True if S ends with the specified suffix, False

otherwise.
exists() Test whether a path exists.
expand() Clean up a filename by calling expandvars(),

expanduser(), and normpath() on it.
expandtabs([tabsize]) Return a copy where all tab characters are expanded

using spaces.
expanduser() Expand ~ and ~user constructions.
expandvars() Expand shell variables of form $var and ${var}.
files() The elements of the list are Path objects.

continues on next page

10 Chapter 4. Hashing

https://docs.python.org/3/library/os.path.html#os.path.basename

mutapath, Release 0.17.0

Table 1 – continued from previous page
find(sub[, start[, end]]) Return the lowest index in S where substring sub is

found, such that sub is contained within S[start:end].
fnmatch (pattern[, normcase]) Return True if self.name matches the given pattern.
format(*args, **kwargs) Return a formatted version of S, using substitutions

from args and kwargs.
format_map(mapping) Return a formatted version of S, using substitutions

from mapping.
get_owner() Return the name of the owner of this file or directory.
getatime()

See also:
atime, os.path.getatime()

getctime()
See also:
ctime, os.path.getctime()

getcwd()
See also:
pathlib.Path.cwd()

getmtime()
See also:
mtime, os.path.getmtime()

getsize()
See also:
size, os.path.getsize()

glob(pattern)
See also:
pathlib.Path.glob()

group() Return the group name of the file gid.
iglob(pattern) Return an iterator of Path objects that match the pat-

tern.
in_place([mode, buffering, encoding, ...]) A context in which a file may be re-written in-place

with new content.
index(sub[, start[, end]]) Return the lowest index in S where substring sub is

found, such that sub is contained within S[start:end].
is_absolute() True if the path is absolute (has both a root and, if

applicable, a drive).
is_block_device() Whether this path is a block device.
is_char_device() Whether this path is a character device.
is_dir() Whether this path is a directory.
is_fifo() Whether this path is a FIFO.
is_file() Whether this path is a regular file (also True for sym-

links pointing to regular files).
is_mount() Check if this path is a POSIX mount point
is_reserved() Return True if the path contains one of the special

names reserved by the system, if any.
is_socket() Whether this path is a socket.
is_symlink() Whether this path is a symbolic link.

continues on next page

4.1. Documentation 11

https://docs.python.org/3/library/os.path.html#os.path.getatime
https://docs.python.org/3/library/os.path.html#os.path.getctime
https://docs.python.org/3/library/os.path.html#os.path.getmtime
https://docs.python.org/3/library/os.path.html#os.path.getsize
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob

mutapath, Release 0.17.0

Table 1 – continued from previous page
isabs() Test whether a path is absolute
isalnum() Return True if the string is an alpha-numeric string,

False otherwise.
isalpha() Return True if the string is an alphabetic string, False

otherwise.
isascii() Return True if all characters in the string are ASCII,

False otherwise.
isdecimal() Return True if the string is a decimal string, False oth-

erwise.
isdigit() Return True if the string is a digit string, False other-

wise.
isdir() Return true if the pathname refers to an existing di-

rectory.
isfile() Test whether a path is a regular file
isidentifier() Return True if the string is a valid Python identifier,

False otherwise.
islink() Test whether a path is a symbolic link
islower() Return True if the string is a lowercase string, False

otherwise.
ismount() Test whether a path is a mount point
isnumeric() Return True if the string is a numeric string, False

otherwise.
isprintable() Return True if the string is printable, False otherwise.
isspace() Return True if the string is a whitespace string, False

otherwise.
istitle() Return True if the string is a title-cased string, False

otherwise.
isupper() Return True if the string is an uppercase string, False

otherwise.
iterdir() Iterate over the files in this directory.
join(iterable, /) Concatenate any number of strings.
joinpath (*others)

See also:
pathlib.PurePath.joinpath()

lchmod(mode) Like chmod(), except if the path points to a symlink,
the symlink's permissions are changed, rather than its
target's.

lines([encoding, errors, retain]) Open this file, read all lines, return them in a list.
link(newpath) Create a hard link at newpath, pointing to this file.
link_to(target) Make the target path a hard link pointing to this path.
listdir() Use files() or dirs() instead if you want a listing

of just files or just subdirectories.
ljust(width[, fillchar]) Return a left-justified string of length width.
lower() Return a copy of the string converted to lowercase.
lstat() Like stat(), but do not follow symbolic links.
lstrip([chars]) Return a copy of the string with leading whitespace

removed.
makedirs(name [[, mode, exist_ok]) Super-mkdir; create a leaf directory and all interme-

diate ones.
makedirs_p([mode]) Like makedirs(), but does not raise an exception if

the directory already exists.
continues on next page

12 Chapter 4. Hashing

mutapath, Release 0.17.0

Table 1 – continued from previous page
match (path_pattern) Return True if this path matches the given pattern.
merge_tree(dst[, symlinks, copy_function, ...]) Copy entire contents of self to dst, overwriting exist-

ing contents in dst with those in self.
mkdir([mode]) Create a directory.
mkdir_p([mode]) Like mkdir(), but does not raise an exception if the

directory already exists.
move(dst[, copy_function]) Recursively move a file or directory to another loca-

tion.
moving([lock, timeout, method]) Create a moving context for this immutable path.
mutate() Create a mutable context for this immutable path.
normcase() Normalize case of pathname.
normpath () Normalize path, eliminating double slashes, etc.
open(*args, **kwargs) Open file and return a stream.
partition(sep, /) Partition the string into three parts using the given

separator.
pathconf (name) Return the configuration limit name for the file or di-

rectory path.
posix_string() Get this path as string with posix-like separators (i.e.,

'/').
read_bytes() Return the contents of this file as bytes.
read_hash (hash_name) Calculate given hash for this file.
read_hexhash (hash_name) Calculate given hash for this file, returning hexdigest.
read_md5() Calculate the md5 hash for this file.
read_text([encoding, errors]) Open this file, read it in, return the content as a string.
readlink() Return the path to which this symbolic link points.
readlinkabs() Return the path to which this symbolic link points.
realpath () Return the canonical path of the specified filename,

eliminating any symbolic links encountered in the
path.

relative_to(*other) Return the relative path to another path identified by
the passed arguments.

relpath ([start]) Return this path as a relative path, based from start,
which defaults to the current working directory.

relpathto(dest) Return a relative path from self to dest.
remove() Remove a file (same as unlink()).
remove_p() Like remove(), but does not raise an exception if the

file does not exist.
removedirs(name) Super-rmdir; remove a leaf directory and all empty

intermediate ones.
removedirs_p() Like removedirs(), but does not raise an exception

if the directory is not empty or does not exist.
rename(new) Rename a file or directory.
renames(old, new) Super-rename; create directories as necessary and

delete any left empty.
renaming([lock, timeout, method]) Create a renaming context for this immutable path.
replace(old, new[, count]) Return a copy with all occurrences of substring old

replaced by new.
resolve([strict]) Make the path absolute, resolving all symlinks on

the way and also normalizing it (for example turning
slashes into backslashes under Windows).

rfind(sub[, start[, end]]) Return the highest index in S where substring sub is
found, such that sub is contained within S[start:end].

continues on next page

4.1. Documentation 13

mutapath, Release 0.17.0

Table 1 – continued from previous page
rglob(pattern) Recursively yield all existing files (of any kind, in-

cluding directories) matching the given relative pat-
tern, anywhere in this subtree.

rindex(sub[, start[, end]]) Return the highest index in S where substring sub is
found, such that sub is contained within S[start:end].

rjust(width[, fillchar]) Return a right-justified string of length width.
rmdir() Remove a directory.
rmdir_p() Like rmdir(), but does not raise an exception if the

directory is not empty or does not exist.
rmtree([ignore_errors, onerror]) Recursively delete a directory tree.
rmtree_p() Like rmtree(), but does not raise an exception if the

directory does not exist.
rpartition(sep, /) Partition the string into three parts using the given

separator.
rsplit([sep, maxsplit]) Return a list of the words in the string, using sep as

the delimiter string.
rstrip([chars]) Return a copy of the string with trailing whitespace

removed.
samefile(other) Test whether two pathnames reference the same ac-

tual file or directory
split([sep, maxsplit]) Return a list of the words in the string, using sep as

the delimiter string.
splitall() Return a list of the path components in this path.
splitdrive() Split the drive specifier from this path.
splitext() Split the filename extension from this path and return

the two parts.
splitlines([keepends]) Return a list of the lines in the string, breaking at line

boundaries.
splitpath ()

See also:
parent, name, os.path.split()

startfile() Open this path in a platform-dependant manner.
startswith (prefix[, start[, end]]) Return True if S starts with the specified prefix, False

otherwise.
stat() Perform a stat() system call on this path.
statvfs() Perform a statvfs() system call on this path.
strip([chars]) Return a copy of the string with leading and trailing

whitespace removed.
stripext() For example, Path('/home/guido/python.tar.

gz').stripext() returns Path('/home/guido/
python.tar').

swapcase() Convert uppercase characters to lowercase and low-
ercase characters to uppercase.

symlink([newlink]) Create a symbolic link at newlink, pointing here.
symlink_to(target[, target_is_directory]) Make this path a symlink pointing to the target path.
title() Return a version of the string where each word is ti-

tlecased.
touch () Set the access/modified times of this file to the current

time.
translate(table, /) Replace each character in the string using the given

translation table.
continues on next page

14 Chapter 4. Hashing

https://docs.python.org/3/library/os.path.html#os.path.split

mutapath, Release 0.17.0

Table 1 – continued from previous page
unlink() Remove a file (same as remove()).
unlink_p() Like unlink(), but does not raise an exception if the

file does not exist.
upper() Return a copy of the string converted to uppercase.
using_module(module)

utime(times) Set the access and modified times of this file.
walk() The iterator yields Path objects naming each child

item of this directory and its descendants.
walkdirs()

walkfiles()

with_base(base[, strip_length]) Clone this path with a new base.
with_name(new_name)

See also:
pathlib.PurePath.with_name()

with_parent(new_parent) Clone this path with a new parent.
with_poxis_enabled([enable]) Clone this path in posix format with posix-like sepa-

rators (i.e., '/').
with_stem(new_stem) Clone this path with a new stem.
with_string_repr_enabled([enable]) Clone this path in with string representation enabled.
with_suffix(suffix) Return a new path with the file suffix changed (or

added, if none)
write_bytes(bytes[, append]) Open this file and write the given bytes to it.
write_lines(lines[, encoding, errors, ...]) Write the given lines of text to this file.
write_text(text[, encoding, errors, ...]) Write the given text to this file.
zfill(width, /) Pad a numeric string with zeros on the left, to fill a

field of the given width.

mutapath.Path.absolute

Path.absolute()

Return an absolute version of this path. This function works even if the path doesn’t point to anything.

No normalization is done, i.e. all ‘.’ and ‘..’ will be kept along. Use resolve() to get the canonical path to
a file.

4.1. Documentation 15

mutapath, Release 0.17.0

mutapath.Path.abspath

Path.abspath()

Return an absolute path.

mutapath.Path.access

Path.access(mode)
Return True if current user has access to this path.

mode - One of the constants os.F_OK, os.R_OK, os.W_OK, os.X_OK

See also:

os.access()

mutapath.Path.as_posix

Path.as_posix()

Return the string representation of the path with forward (/) slashes.

mutapath.Path.as_uri

Path.as_uri()

Return the path as a ‘file’ URI.

mutapath.Path.basename

Path.basename()

See also:

name, os.path.basename()

mutapath.Path.capitalize

Path.capitalize()

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

mutapath.Path.casefold

Path.casefold()

Return a version of the string suitable for caseless comparisons.

16 Chapter 4. Hashing

https://docs.python.org/3/library/os.html#os.F_OK
https://docs.python.org/3/library/os.html#os.R_OK
https://docs.python.org/3/library/os.html#os.W_OK
https://docs.python.org/3/library/os.html#os.X_OK
https://docs.python.org/3/library/os.html#os.access
https://docs.python.org/3/library/os.path.html#os.path.basename

mutapath, Release 0.17.0

mutapath.Path.cd

Path.cd()

Change the current working directory to the specified path.

path may always be specified as a string. On some platforms, path may also be specified as an open file
descriptor.

If this functionality is unavailable, using it raises an exception.

mutapath.Path.center

Path.center(width, fillchar=' ', /)
Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

mutapath.Path.chdir

Path.chdir()

Change the current working directory to the specified path.

path may always be specified as a string. On some platforms, path may also be specified as an open file
descriptor.

If this functionality is unavailable, using it raises an exception.

mutapath.Path.chmod

Path.chmod(mode)
Set the mode. May be the new mode (os.chmod behavior) or a symbolic mode.

See also:

os.chmod()

mutapath.Path.chown

Path.chown(uid=-1, gid=-1)
Change the owner and group by names rather than the uid or gid numbers.

See also:

os.chown()

4.1. Documentation 17

http://en.wikipedia.org/wiki/Chmod#Symbolic_modes
https://docs.python.org/3/library/os.html#os.chmod
https://docs.python.org/3/library/os.html#os.chown

mutapath, Release 0.17.0

mutapath.Path.chroot

Path.chroot()

Change root directory to path.

mutapath.Path.chunks

Path.chunks(size, *args, **kwargs)

Returns a generator yielding chunks of the file, so it can
be read piece by piece with a simple for loop.

Any argument you pass after size will be passed to open().

Example

>>> hash = hashlib.md5()
>>> for chunk in Path("CHANGES.rst").chunks(8192, mode='rb'):
... hash.update(chunk)

This will read the file by chunks of 8192 bytes.

mutapath.Path.clone

Path.clone(contained)→ Path
Clone this path with a new given wrapped path representation, having the same remaining attributes. :param
contained: the new contained path element :return: the cloned path

mutapath.Path.copy

Path.copy(dst, *, follow_symlinks=True)
Copy data and mode bits (“cp src dst”). Return the file’s destination.

The destination may be a directory.

If follow_symlinks is false, symlinks won’t be followed. This resembles GNU’s “cp -P src dst”.

If source and destination are the same file, a SameFileError will be raised.

mutapath.Path.copy2

Path.copy2(dst, *, follow_symlinks=True)
Copy data and metadata. Return the file’s destination.

Metadata is copied with copystat(). Please see the copystat function for more information.

The destination may be a directory.

If follow_symlinks is false, symlinks won’t be followed. This resembles GNU’s “cp -P src dst”.

18 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.Path.copyfile

Path.copyfile(dst, *, follow_symlinks=True)
Copy data from src to dst in the most efficient way possible.

If follow_symlinks is not set and src is a symbolic link, a new symlink will be created instead of copying
the file it points to.

mutapath.Path.copying

Path.copying(lock=True, timeout=1, method: ~typing.Callable[[~mutapath.immutapath.Path,
~mutapath.immutapath.Path], ~mutapath.immutapath.Path] = <function copy>)

Create a copying context for this immutable path. The external value is only changed if the copying suc-
ceeds.

Parameters

• timeout – the timeout in seconds how long the lock file should be acquired

• lock – if the source file should be locked as long as this context is open

• method – an alternative method that copies the path and returns the new path (e.g.,
shutil.copy2)

Example

>>> with Path('/home/doe/folder/a.txt').copying() as mut:
... mut.stem = "b"
Path('/home/doe/folder/b.txt')

mutapath.Path.copymode

Path.copymode(dst, *, follow_symlinks=True)
Copy mode bits from src to dst.

If follow_symlinks is not set, symlinks aren’t followed if and only if both src and dst are symlinks. If
lchmod isn’t available (e.g. Linux) this method does nothing.

mutapath.Path.copystat

Path.copystat(dst, *, follow_symlinks=True)
Copy file metadata

Copy the permission bits, last access time, last modification time, and flags from src to dst. On Linux,
copystat() also copies the “extended attributes” where possible. The file contents, owner, and group are
unaffected. src and dst are path-like objects or path names given as strings.

If the optional flag follow_symlinks is not set, symlinks aren’t followed if and only if both src and dst are
symlinks.

4.1. Documentation 19

mutapath, Release 0.17.0

mutapath.Path.copytree

Path.copytree(dst, symlinks=False, ignore=None, copy_function=<function copy2>,
ignore_dangling_symlinks=False, dirs_exist_ok=False)

Recursively copy a directory tree and return the destination directory.

dirs_exist_ok dictates whether to raise an exception in case dst or any missing parent directory already
exists.

If exception(s) occur, an Error is raised with a list of reasons.

If the optional symlinks flag is true, symbolic links in the source tree result in symbolic links in the desti-
nation tree; if it is false, the contents of the files pointed to by symbolic links are copied. If the file pointed
by the symlink doesn’t exist, an exception will be added in the list of errors raised in an Error exception at
the end of the copy process.

You can set the optional ignore_dangling_symlinks flag to true if you want to silence this exception. Notice
that this has no effect on platforms that don’t support os.symlink.

The optional ignore argument is a callable. If given, it is called with the src parameter, which is the directory
being visited by copytree(), and names which is the list of src contents, as returned by os.listdir():

callable(src, names) -> ignored_names

Since copytree() is called recursively, the callable will be called once for each directory that is copied. It
returns a list of names relative to the src directory that should not be copied.

The optional copy_function argument is a callable that will be used to copy each file. It will be called with
the source path and the destination path as arguments. By default, copy2() is used, but any function that
supports the same signature (like copy()) can be used.

mutapath.Path.count

Path.count(sub[, start[, end]])→ int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional argu-
ments start and end are interpreted as in slice notation.

mutapath.Path.dirs

Path.dirs()→ List of this directory's subdirectories.
The elements of the list are Path objects. This does not walk recursively into subdirectories (but see
walkdirs()).

Accepts parameters to listdir().

mutapath.Path.encode

Path.encode(encoding='utf-8', errors='strict')
Encode the string using the codec registered for encoding.

encoding
The encoding in which to encode the string.

20 Chapter 4. Hashing

https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding er-
rors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’
as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

mutapath.Path.endswith

Path.endswith(suffix[, start[, end]])→ bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that
position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

mutapath.Path.exists

Path.exists()

Test whether a path exists. Returns False for broken symbolic links

mutapath.Path.expand

Path.expand()

Clean up a filename by calling expandvars(), expanduser(), and normpath() on it.

This is commonly everything needed to clean up a filename read from a configuration file, for example.

mutapath.Path.expandtabs

Path.expandtabs(tabsize=8)
Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

mutapath.Path.expanduser

Path.expanduser()

Expand ~ and ~user constructions. If user or $HOME is unknown, do nothing.

mutapath.Path.expandvars

Path.expandvars()

Expand shell variables of form $var and ${var}. Unknown variables are left unchanged.

4.1. Documentation 21

https://docs.python.org/3/library/functions.html#bool

mutapath, Release 0.17.0

mutapath.Path.files

Path.files()→ List of the files in this directory.
The elements of the list are Path objects. This does not walk into subdirectories (see walkfiles()).

Accepts parameters to listdir().

mutapath.Path.find

Path.find(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

mutapath.Path.fnmatch

Path.fnmatch(pattern, normcase=None)
Return True if self.name matches the given pattern.

pattern - A filename pattern with wildcards,
for example '*.py'. If the pattern contains a normcase attribute, it is applied to the name and path
prior to comparison.

normcase - (optional) A function used to normalize the pattern and
filename before matching. Defaults to self.module(), which defaults to os.path.normcase().

See also:

fnmatch.fnmatch()

mutapath.Path.format

Path.format(*args, **kwargs)→ str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified
by braces (‘{’ and ‘}’).

mutapath.Path.format_map

Path.format_map(mapping)→ str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by
braces (‘{’ and ‘}’).

22 Chapter 4. Hashing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

mutapath, Release 0.17.0

mutapath.Path.get_owner

Path.get_owner()

Return the name of the owner of this file or directory. Follow symbolic links.

See also:

owner

mutapath.Path.getatime

Path.getatime()

See also:

atime, os.path.getatime()

mutapath.Path.getctime

Path.getctime()

See also:

ctime, os.path.getctime()

mutapath.Path.getcwd

classmethod Path.getcwd()→ Path

See also:

pathlib.Path.cwd()

mutapath.Path.getmtime

Path.getmtime()

See also:

mtime, os.path.getmtime()

mutapath.Path.getsize

Path.getsize()

See also:

size, os.path.getsize()

4.1. Documentation 23

https://docs.python.org/3/library/os.path.html#os.path.getatime
https://docs.python.org/3/library/os.path.html#os.path.getctime
https://docs.python.org/3/library/os.path.html#os.path.getmtime
https://docs.python.org/3/library/os.path.html#os.path.getsize

mutapath, Release 0.17.0

mutapath.Path.glob

Path.glob(pattern)→ Iterable[Path]

See also:

pathlib.Path.glob()

mutapath.Path.group

Path.group()

Return the group name of the file gid.

mutapath.Path.iglob

Path.iglob(pattern)
Return an iterator of Path objects that match the pattern.

pattern - a path relative to this directory, with wildcards.

For example, Path('/users').iglob('*/bin/*') returns an iterator of all the files users have in their
bin directories.

See also:

glob.iglob()

Note: Glob is not recursive, even when using **. To do recursive globbing see walk(), walkdirs() or
walkfiles().

mutapath.Path.in_place

Path.in_place(mode='r', buffering=-1, encoding=None, errors=None, newline=None,
backup_extension=None)

A context in which a file may be re-written in-place with new content.

Yields a tuple of (readable, writable) file objects, where writable replaces readable.

If an exception occurs, the old file is restored, removing the written data.

Mode must not use 'w', 'a', or '+'; only read-only-modes are allowed. A ValueError is raised on
invalid modes.

For example, to add line numbers to a file:

p = Path(filename)
assert p.isfile()
with p.in_place() as (reader, writer):

for number, line in enumerate(reader, 1):
writer.write('{0:3}: '.format(number)))
writer.write(line)

Thereafter, the file at filename will have line numbers in it.

24 Chapter 4. Hashing

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob
https://docs.python.org/3/library/glob.html#glob.iglob
https://docs.python.org/3/library/exceptions.html#ValueError

mutapath, Release 0.17.0

mutapath.Path.index

Path.index(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

mutapath.Path.is_absolute

Path.is_absolute()

True if the path is absolute (has both a root and, if applicable, a drive).

mutapath.Path.is_block_device

Path.is_block_device()

Whether this path is a block device.

mutapath.Path.is_char_device

Path.is_char_device()

Whether this path is a character device.

mutapath.Path.is_dir

Path.is_dir()

Whether this path is a directory.

mutapath.Path.is_fifo

Path.is_fifo()

Whether this path is a FIFO.

mutapath.Path.is_file

Path.is_file()

Whether this path is a regular file (also True for symlinks pointing to regular files).

mutapath.Path.is_mount

Path.is_mount()

Check if this path is a POSIX mount point

4.1. Documentation 25

https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

mutapath.Path.is_reserved

Path.is_reserved()

Return True if the path contains one of the special names reserved by the system, if any.

mutapath.Path.is_socket

Path.is_socket()

Whether this path is a socket.

mutapath.Path.is_symlink

Path.is_symlink()

Whether this path is a symbolic link.

mutapath.Path.isabs

Path.isabs()

Test whether a path is absolute

mutapath.Path.isalnum

Path.isalnum()

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character
in the string.

mutapath.Path.isalpha

Path.isalpha()

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the
string.

mutapath.Path.isascii

Path.isascii()

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

26 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.Path.isdecimal

Path.isdecimal()

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in
the string.

mutapath.Path.isdigit

Path.isdigit()

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the
string.

mutapath.Path.isdir

Path.isdir()

Return true if the pathname refers to an existing directory.

mutapath.Path.isfile

Path.isfile()

Test whether a path is a regular file

mutapath.Path.isidentifier

Path.isidentifier()

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

mutapath.Path.islink

Path.islink()

Test whether a path is a symbolic link

mutapath.Path.islower

Path.islower()

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character
in the string.

4.1. Documentation 27

mutapath, Release 0.17.0

mutapath.Path.ismount

Path.ismount()

Test whether a path is a mount point

mutapath.Path.isnumeric

Path.isnumeric()

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

mutapath.Path.isprintable

Path.isprintable()

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

mutapath.Path.isspace

Path.isspace()

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the
string.

mutapath.Path.istitle

Path.istitle()

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase
characters only cased ones.

mutapath.Path.isupper

Path.isupper()

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased
character in the string.

28 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.Path.iterdir

Path.iterdir()

Iterate over the files in this directory. Does not yield any result for the special paths ‘.’ and ‘..’.

mutapath.Path.join

Path.join(iterable, /)
Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new
string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

mutapath.Path.joinpath

Path.joinpath(*others)→ Path

See also:

pathlib.PurePath.joinpath()

mutapath.Path.lchmod

Path.lchmod(mode)
Like chmod(), except if the path points to a symlink, the symlink’s permissions are changed, rather than its
target’s.

mutapath.Path.lines

Path.lines(encoding=None, errors='strict', retain=True)
Open this file, read all lines, return them in a list.

Optional arguments:

encoding - The Unicode encoding (or character set) of
the file. The default is None, meaning the content of the file is read as 8-bit characters and returned
as a list of (non-Unicode) str objects.

errors - How to handle Unicode errors; see help(str.decode)
for the options. Default is 'strict'.

retain - If True, retain newline characters; but all newline
character combinations ('\r', '\n', '\r\n') are translated to '\n'. If False, newline charac-
ters are stripped off. Default is True.

See also:

text()

4.1. Documentation 29

mutapath, Release 0.17.0

mutapath.Path.link

Path.link(newpath)
Create a hard link at newpath, pointing to this file.

See also:

os.link()

mutapath.Path.link_to

Path.link_to(target)
Make the target path a hard link pointing to this path.

Note this function does not make this path a hard link to target, despite the implication of the function and
argument names. The order of arguments (target, link) is the reverse of Path.symlink_to, but matches that
of os.link.

mutapath.Path.listdir

Path.listdir()→ List of items in this directory.
Use files() or dirs() instead if you want a listing of just files or just subdirectories.

The elements of the list are Path objects.

With the optional match argument, a callable, only return items whose names match the given pattern.

See also:

files(), dirs()

mutapath.Path.ljust

Path.ljust(width, fillchar=' ', /)
Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

mutapath.Path.lower

Path.lower()

Return a copy of the string converted to lowercase.

mutapath.Path.lstat

Path.lstat()

Like stat(), but do not follow symbolic links.

See also:

stat(), os.lstat()

30 Chapter 4. Hashing

https://docs.python.org/3/library/os.html#os.link
https://docs.python.org/3/library/os.html#os.lstat

mutapath, Release 0.17.0

mutapath.Path.lstrip

Path.lstrip(chars=None, /)
Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

mutapath.Path.makedirs

Path.makedirs(name [, mode=0o777][, exist_ok=False])
Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any interme-
diate path segment (not just the rightmost) will be created if it does not exist. If the target directory already
exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive.

mutapath.Path.makedirs_p

Path.makedirs_p(mode=511)
Like makedirs(), but does not raise an exception if the directory already exists.

mutapath.Path.match

Path.match(path_pattern)
Return True if this path matches the given pattern.

mutapath.Path.merge_tree

Path.merge_tree(dst, symlinks=False, *, copy_function=<function copy2>, ignore=<function
Path.<lambda>>)

Copy entire contents of self to dst, overwriting existing contents in dst with those in self.

Pass symlinks=True to copy symbolic links as links.

Accepts a copy_function, similar to copytree.

To avoid overwriting newer files, supply a copy function wrapped in only_newer. For example:

src.merge_tree(dst, copy_function=only_newer(shutil.copy2))

mutapath.Path.mkdir

Path.mkdir(mode=511)
Create a directory.

If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.

dir_fd may not be implemented on your platform.
If it is unavailable, using it will raise a NotImplementedError.

The mode argument is ignored on Windows.

4.1. Documentation 31

mutapath, Release 0.17.0

mutapath.Path.mkdir_p

Path.mkdir_p(mode=511)
Like mkdir(), but does not raise an exception if the directory already exists.

mutapath.Path.move

Path.move(dst, copy_function=<function copy2>)
Recursively move a file or directory to another location. This is similar to the Unix “mv” command. Return
the file or directory’s destination.

If the destination is a directory or a symlink to a directory, the source is moved inside the directory. The
destination path must not already exist.

If the destination already exists but is not a directory, it may be overwritten depending on os.rename()
semantics.

If the destination is on our current filesystem, then rename() is used. Otherwise, src is copied to the desti-
nation and then removed. Symlinks are recreated under the new name if os.rename() fails because of cross
filesystem renames.

The optional copy_function argument is a callable that will be used to copy the source or it will be delegated
to copytree. By default, copy2() is used, but any function that supports the same signature (like copy()) can
be used.

A lot more could be done here. . . A look at a mv.c shows a lot of the issues this implementation glosses
over.

mutapath.Path.moving

Path.moving(lock=True, timeout=1, method: ~typing.Callable[[~os.PathLike, ~os.PathLike], str] =
<function move>)

Create a moving context for this immutable path. The external value is only changed if the moving succeeds.

Parameters

• timeout – the timeout in seconds how long the lock file should be acquired

• lock – if the source file should be locked as long as this context is open

• method – an alternative method that moves the path and returns the new path

Example

>>> with Path('/home/doe/folder/a.txt').moving() as mut:
... mut.stem = "b"
Path('/home/doe/folder/b.txt')

32 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.Path.mutate

Path.mutate()

Create a mutable context for this immutable path.

Example

>>> with Path('/home/doe/folder/sub').mutate() as mut:
... mut.name = "top"
Path('/home/doe/folder/top')

mutapath.Path.normcase

Path.normcase()

Normalize case of pathname. Has no effect under Posix

mutapath.Path.normpath

Path.normpath()

Normalize path, eliminating double slashes, etc.

mutapath.Path.open

Path.open(*args, **kwargs)
Open file and return a stream. Raise OSError upon failure.

file is either a text or byte string giving the name (and the path if the file isn’t in the current working
directory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor
is given, it is closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ‘r’ which means
open for reading in text mode. Other common values are ‘w’ for writing (truncating the file if it already
exists), ‘x’ for creating and writing to a new file, and ‘a’ for appending (which on some Unix systems,
means that all writes append to the end of the file regardless of the current seek position). In text mode,
if encoding is not specified the encoding used is platform dependent: locale.getpreferredencoding(False)
is called to get the current locale encoding. (For reading and writing raw bytes use binary mode and leave
encoding unspecified.) The available modes are:

Character Meaning
‘r’ open for reading (default)
‘w’ open for writing, truncating the file first
‘x’ create a new file and open it for writing
‘a’ open for writing, appending to the end of the file if it exists
‘b’ binary mode
‘t’ text mode (default)
‘+’ open a disk file for updating (reading and writing)
‘U’ universal newline mode (deprecated)

The default mode is ‘rt’ (open for reading text). For binary random access, the mode ‘w+b’ opens and
truncates the file to 0 bytes, while ‘r+b’ opens the file without truncation. The ‘x’ mode implies ‘w’ and
raises an FileExistsError if the file already exists.

4.1. Documentation 33

mutapath, Release 0.17.0

Python distinguishes between files opened in binary and text modes, even when the underlying operating
system doesn’t. Files opened in binary mode (appending ‘b’ to the mode argument) return contents as bytes
objects without any decoding. In text mode (the default, or when ‘t’ is appended to the mode argument), the
contents of the file are returned as strings, the bytes having been first decoded using a platform-dependent
encoding or using the specified encoding if given.

‘U’ mode is deprecated and will raise an exception in future versions of Python. It has no effect in Python
3. Use newline to control universal newlines mode.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

• Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying
to determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

• “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent, but any encoding supported by Python can be passed.
See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding errors are to be handled—this argument should
not be used in binary mode. Pass ‘strict’ to raise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass ‘ignore’ to ignore errors. (Note that ignoring encoding errors
can lead to data loss.) See the documentation for codecs.register or run ‘help(codecs.Codec)’ for a list of
the permitted encoding error strings.

newline controls how universal newlines works (it only applies to text mode). It can be None, ‘’, ‘n’, ‘r’,
and ‘rn’. It works as follows:

• On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ‘n’, ‘r’,
or ‘rn’, and these are translated into ‘n’ before being returned to the caller. If it is ‘’, universal newline
mode is enabled, but line endings are returned to the caller untranslated. If it has any of the other legal
values, input lines are only terminated by the given string, and the line ending is returned to the caller
untranslated.

• On output, if newline is None, any ‘n’ characters written are translated to the system default line sep-
arator, os.linesep. If newline is ‘’ or ‘n’, no translation takes place. If newline is any of the other legal
values, any ‘n’ characters written are translated to the given string.

If closefd is False, the underlying file descriptor will be kept open when the file is closed. This does not
work when a file name is given and must be True in that case.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file
object is then obtained by calling opener with (file, flags). opener must return an open file descriptor
(passing os.open as opener results in functionality similar to passing None).

open() returns a file object whose type depends on the mode, and through which the standard file operations
such as reading and writing are performed. When open() is used to open a file in a text mode (‘w’, ‘r’, ‘wt’,
‘rt’, etc.), it returns a TextIOWrapper. When used to open a file in a binary mode, the returned class varies:
in read binary mode, it returns a BufferedReader; in write binary and append binary modes, it returns a
BufferedWriter, and in read/write mode, it returns a BufferedRandom.

It is also possible to use a string or bytearray as a file for both reading and writing. For strings StringIO can
be used like a file opened in a text mode, and for bytes a BytesIO can be used like a file opened in a binary
mode.

34 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.Path.partition

Path.partition(sep, /)
Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the
part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

mutapath.Path.pathconf

Path.pathconf(name)
Return the configuration limit name for the file or directory path.

If there is no limit, return -1. On some platforms, path may also be specified as an open file descriptor.

If this functionality is unavailable, using it raises an exception.

mutapath.Path.posix_string

Path.posix_string()→ str
Get this path as string with posix-like separators (i.e., ‘/’).

Example

>>> Path("\home\\doe/folder\sub").with_poxis_enabled()
'/home/joe/doe/folder/sub'

mutapath.Path.read_bytes

Path.read_bytes()

Return the contents of this file as bytes.

mutapath.Path.read_hash

Path.read_hash(hash_name)
Calculate given hash for this file.

List of supported hashes can be obtained from hashlib package. This reads the entire file.

See also:

hashlib.hash.digest()

4.1. Documentation 35

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/hashlib.html#module-hashlib
https://docs.python.org/3/library/hashlib.html#hashlib.hash.digest

mutapath, Release 0.17.0

mutapath.Path.read_hexhash

Path.read_hexhash(hash_name)
Calculate given hash for this file, returning hexdigest.

List of supported hashes can be obtained from hashlib package. This reads the entire file.

See also:

hashlib.hash.hexdigest()

mutapath.Path.read_md5

Path.read_md5()

Calculate the md5 hash for this file.

This reads through the entire file.

See also:

read_hash()

mutapath.Path.read_text

Path.read_text(encoding=None, errors=None)
Open this file, read it in, return the content as a string.

Optional parameters are passed to open().

See also:

lines()

mutapath.Path.readlink

Path.readlink()

Return the path to which this symbolic link points.

The result may be an absolute or a relative path.

See also:

readlinkabs(), os.readlink()

mutapath.Path.readlinkabs

Path.readlinkabs()

Return the path to which this symbolic link points.

The result is always an absolute path.

See also:

readlink(), os.readlink()

36 Chapter 4. Hashing

https://docs.python.org/3/library/hashlib.html#module-hashlib
https://docs.python.org/3/library/hashlib.html#hashlib.hash.hexdigest
https://docs.python.org/3/library/os.html#os.readlink
https://docs.python.org/3/library/os.html#os.readlink

mutapath, Release 0.17.0

mutapath.Path.realpath

Path.realpath()

Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path.

mutapath.Path.relative_to

Path.relative_to(*other)
Return the relative path to another path identified by the passed arguments. If the operation is not possible
(because this is not a subpath of the other path), raise ValueError.

mutapath.Path.relpath

Path.relpath(start='.')
Return this path as a relative path, based from start, which defaults to the current working directory.

mutapath.Path.relpathto

Path.relpathto(dest)
Return a relative path from self to dest.

If there is no relative path from self to dest, for example if they reside on different drives in Windows, then
this returns dest.abspath().

mutapath.Path.remove

Path.remove()

Remove a file (same as unlink()).

If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.

dir_fd may not be implemented on your platform.
If it is unavailable, using it will raise a NotImplementedError.

mutapath.Path.remove_p

Path.remove_p()

Like remove(), but does not raise an exception if the file does not exist.

mutapath.Path.removedirs

Path.removedirs(name)
Super-rmdir; remove a leaf directory and all empty intermediate ones. Works like rmdir except that, if the
leaf directory is successfully removed, directories corresponding to rightmost path segments will be pruned
away until either the whole path is consumed or an error occurs. Errors during this latter phase are ignored
– they generally mean that a directory was not empty.

4.1. Documentation 37

mutapath, Release 0.17.0

mutapath.Path.removedirs_p

Path.removedirs_p()

Like removedirs(), but does not raise an exception if the directory is not empty or does not exist.

mutapath.Path.rename

Path.rename(new)
Rename a file or directory.

If either src_dir_fd or dst_dir_fd is not None, it should be a file
descriptor open to a directory, and the respective path string (src or dst) should be relative; the path
will then be relative to that directory.

src_dir_fd and dst_dir_fd, may not be implemented on your platform.
If they are unavailable, using them will raise a NotImplementedError.

mutapath.Path.renames

Path.renames(old, new)
Super-rename; create directories as necessary and delete any left empty. Works like rename, except creation
of any intermediate directories needed to make the new pathname good is attempted first. After the rename,
directories corresponding to rightmost path segments of the old name will be pruned until either the whole
path is consumed or a nonempty directory is found.

Note: this function can fail with the new directory structure made if you lack permissions needed to unlink
the leaf directory or file.

mutapath.Path.renaming

Path.renaming(lock=True, timeout=1, method: ~typing.Callable[[str, str], None] = <built-in function
rename>)

Create a renaming context for this immutable path. The external value is only changed if the renaming
succeeds.

Parameters

• timeout – the timeout in seconds how long the lock file should be acquired

• lock – if the source file should be locked as long as this context is open

• method – an alternative method that renames the path (e.g., os.renames)

Example

>>> with Path('/home/doe/folder/a.txt').renaming() as mut:
... mut.stem = "b"
Path('/home/doe/folder/b.txt')

38 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.Path.replace

Path.replace(old, new, count=-1, /)
Return a copy with all occurrences of substring old replaced by new.

count
Maximum number of occurrences to replace. -1 (the default value) means replace all occur-
rences.

If the optional argument count is given, only the first count occurrences are replaced.

mutapath.Path.resolve

Path.resolve(strict=False)
Make the path absolute, resolving all symlinks on the way and also normalizing it (for example turning
slashes into backslashes under Windows).

mutapath.Path.rfind

Path.rfind(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

mutapath.Path.rglob

Path.rglob(pattern)
Recursively yield all existing files (of any kind, including directories) matching the given relative pattern,
anywhere in this subtree.

mutapath.Path.rindex

Path.rindex(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

mutapath.Path.rjust

Path.rjust(width, fillchar=' ', /)
Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

4.1. Documentation 39

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

mutapath.Path.rmdir

Path.rmdir()

Remove a directory.

If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.

dir_fd may not be implemented on your platform.
If it is unavailable, using it will raise a NotImplementedError.

mutapath.Path.rmdir_p

Path.rmdir_p()

Like rmdir(), but does not raise an exception if the directory is not empty or does not exist.

mutapath.Path.rmtree

Path.rmtree(ignore_errors=False, onerror=None)
Recursively delete a directory tree.

If ignore_errors is set, errors are ignored; otherwise, if onerror is set, it is called to handle the error with ar-
guments (func, path, exc_info) where func is platform and implementation dependent; path is the argument
to that function that caused it to fail; and exc_info is a tuple returned by sys.exc_info(). If ignore_errors is
false and onerror is None, an exception is raised.

mutapath.Path.rmtree_p

Path.rmtree_p()

Like rmtree(), but does not raise an exception if the directory does not exist.

mutapath.Path.rpartition

Path.rpartition(sep, /)
Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple
containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

mutapath.Path.rsplit

Path.rsplit(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string.

sep
The delimiter according which to split the string. None (the default value) means split ac-
cording to any whitespace, and discard empty strings from the result.

maxsplit
Maximum number of splits to do. -1 (the default value) means no limit.

40 Chapter 4. Hashing

mutapath, Release 0.17.0

Splits are done starting at the end of the string and working to the front.

mutapath.Path.rstrip

Path.rstrip(chars=None, /)
Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

mutapath.Path.samefile

Path.samefile(other)
Test whether two pathnames reference the same actual file or directory

This is determined by the device number and i-node number and raises an exception if an os.stat() call on
either pathname fails.

mutapath.Path.split

Path.split(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string.

sep
The delimiter according which to split the string. None (the default value) means split according to
any whitespace, and discard empty strings from the result.

maxsplit
Maximum number of splits to do. -1 (the default value) means no limit.

mutapath.Path.splitall

Path.splitall()

Return a list of the path components in this path.

The first item in the list will be a Path. Its value will be either os.curdir, os.pardir, empty, or the root
directory of this path (for example, '/' or 'C:\\'). The other items in the list will be strings.

path.Path.joinpath(*result) will yield the original path.

mutapath.Path.splitdrive

Path.splitdrive()→ Return ``(p.drive, <the rest of p>)``.
Split the drive specifier from this path. If there is no drive specifier, p.drive is empty, so the return value
is simply (Path(''), p). This is always the case on Unix.

See also:

os.path.splitdrive()

4.1. Documentation 41

https://docs.python.org/3/library/os.html#os.curdir
https://docs.python.org/3/library/os.html#os.pardir
https://docs.python.org/3/library/os.path.html#os.path.splitdrive

mutapath, Release 0.17.0

mutapath.Path.splitext

Path.splitext()→ Return ``(p.stripext(), p.ext)``.
Split the filename extension from this path and return the two parts. Either part may be empty.

The extension is everything from '.' to the end of the last path segment. This has the property that if (a,
b) == p.splitext(), then a + b == p.

See also:

os.path.splitext()

mutapath.Path.splitlines

Path.splitlines(keepends=False)
Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

mutapath.Path.splitpath

Path.splitpath()→ Return ``(p.parent, p.name)``.

See also:

parent, name, os.path.split()

mutapath.Path.startfile

Path.startfile()

Open this path in a platform-dependant manner. This method follows the best practice from Openstack.

See also:

os.startfile()

mutapath.Path.startswith

Path.startswith(prefix[, start[, end]])→ bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at
that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to
try.

mutapath.Path.stat

Path.stat()

Perform a stat() system call on this path.

See also:

lstat(), os.stat()

42 Chapter 4. Hashing

https://docs.python.org/3/library/os.path.html#os.path.splitext
https://docs.python.org/3/library/os.path.html#os.path.split
https://security.openstack.org/guidelines/dg_use-subprocess-securely.html
https://docs.python.org/3/library/os.html#os.startfile
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/os.html#os.stat

mutapath, Release 0.17.0

mutapath.Path.statvfs

Path.statvfs()

Perform a statvfs() system call on this path.

See also:

os.statvfs()

mutapath.Path.strip

Path.strip(chars=None, /)
Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

mutapath.Path.stripext

Path.stripext()→ Remove one file extension from the path.
For example, Path('/home/guido/python.tar.gz').stripext() returns Path('/home/guido/
python.tar').

mutapath.Path.swapcase

Path.swapcase()

Convert uppercase characters to lowercase and lowercase characters to uppercase.

mutapath.Path.symlink

Path.symlink(newlink=None)
Create a symbolic link at newlink, pointing here.

If newlink is not supplied, the symbolic link will assume the name self.basename(), creating the link in the
cwd.

See also:

os.symlink()

mutapath.Path.symlink_to

Path.symlink_to(target, target_is_directory=False)
Make this path a symlink pointing to the target path. Note the order of arguments (link, target) is the reverse
of os.symlink.

4.1. Documentation 43

https://docs.python.org/3/library/os.html#os.statvfs
https://docs.python.org/3/library/os.html#os.symlink

mutapath, Release 0.17.0

mutapath.Path.title

Path.title()

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower
case.

mutapath.Path.touch

Path.touch()

Set the access/modified times of this file to the current time. Create the file if it does not exist.

mutapath.Path.translate

Path.translate(table, /)
Replace each character in the string using the given translation table.

table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings,
or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this opera-
tion raises LookupError, the character is left untouched. Characters mapped to None are deleted.

mutapath.Path.unlink

Path.unlink()

Remove a file (same as remove()).

If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.

dir_fd may not be implemented on your platform.
If it is unavailable, using it will raise a NotImplementedError.

mutapath.Path.unlink_p

Path.unlink_p()

Like unlink(), but does not raise an exception if the file does not exist.

mutapath.Path.upper

Path.upper()

Return a copy of the string converted to uppercase.

44 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.Path.using_module

Path.using_module(module)

mutapath.Path.utime

Path.utime(times)
Set the access and modified times of this file.

See also:

os.utime()

mutapath.Path.walk

Path.walk()→ iterator over files and subdirs, recursively.
The iterator yields Path objects naming each child item of this directory and its descendants. This requires
that D.isdir().

This performs a depth-first traversal of the directory tree. Each directory is returned just before all its
children.

The errors= keyword argument controls behavior when an error occurs. The default is 'strict', which
causes an exception. Other allowed values are 'warn' (which reports the error via warnings.warn()),
and 'ignore'. errors may also be an arbitrary callable taking a msg parameter.

mutapath.Path.walkdirs

Path.walkdirs()→ iterator over subdirs, recursively.

mutapath.Path.walkfiles

Path.walkfiles()→ iterator over files in D, recursively.

mutapath.Path.with_base

Path.with_base(base, strip_length: int = 0)
Clone this path with a new base.

The given path is used in its full length as base of this path, if strip_length is not specified.

Example

>>> Path('/home/doe/folder/sub').with_base("/home/joe")
Path('/home/joe/folder/sub')

If strip_length is specified, the given number of path elements are stripped from the left side, and the given
base is prepended.

Example

>>> Path('/home/doe/folder/sub').with_base("/home/joe", strip_length=1)
Path('/home/joe/doe/folder/sub')

4.1. Documentation 45

https://docs.python.org/3/library/os.html#os.utime
https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

mutapath.Path.with_name

Path.with_name(new_name)→ Path

See also:

pathlib.PurePath.with_name()

mutapath.Path.with_parent

Path.with_parent(new_parent)→ Path
Clone this path with a new parent.

mutapath.Path.with_poxis_enabled

Path.with_poxis_enabled(enable: bool = True)→ Path
Clone this path in posix format with posix-like separators (i.e., ‘/’).

Example

>>> Path("\home\\doe/folder\sub").with_poxis_enabled()
Path('/home/joe/doe/folder/sub')

mutapath.Path.with_stem

Path.with_stem(new_stem)→ Path
Clone this path with a new stem.

mutapath.Path.with_string_repr_enabled

Path.with_string_repr_enabled(enable: bool = True)→ Path
Clone this path in with string representation enabled.

Example

>>> Path("/home/doe/folder/sub").with_string_repr_enabled()
'/home/joe/doe/folder/sub'

mutapath.Path.with_suffix

Path.with_suffix(suffix)
Return a new path with the file suffix changed (or added, if none)

>>> Path('/home/guido/python.tar.gz').with_suffix(".foo")
Path('/home/guido/python.tar.foo')

>>> Path('python').with_suffix('.zip')
Path('python.zip')

46 Chapter 4. Hashing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

mutapath, Release 0.17.0

>>> Path('filename.ext').with_suffix('zip')
Traceback (most recent call last):
...
ValueError: Invalid suffix 'zip'

mutapath.Path.write_bytes

Path.write_bytes(bytes, append=False)
Open this file and write the given bytes to it.

Default behavior is to overwrite any existing file. Call p.write_bytes(bytes, append=True) to ap-
pend instead.

mutapath.Path.write_lines

Path.write_lines(lines, encoding=None, errors='strict', linesep='\n', append=False)
Write the given lines of text to this file.

By default this overwrites any existing file at this path.

This puts a platform-specific newline sequence on every line. See linesep below.

lines - A list of strings.

encoding - A Unicode encoding to use. This applies only if
lines contains any Unicode strings.

errors - How to handle errors in Unicode encoding. This
also applies only to Unicode strings.

linesep - The desired line-ending. This line-ending is
applied to every line. If a line already has any standard line ending ('\r', '\n', '\r\n',
u'\x85', u'\r\x85', u'\u2028'), that will be stripped off and this will be used instead.
The default is os.linesep, which is platform-dependent ('\r\n' on Windows, '\n' on Unix,
etc.). Specify None to write the lines as-is, like file.writelines().

Use the keyword argument append=True to append lines to the file. The default is to overwrite the file.

Warning: When you use this with Unicode data, if the encoding of the existing data in the file is
different from the encoding you specify with the encoding= parameter, the result is mixed-encoding
data, which can really confuse someone trying to read the file later.

mutapath.Path.write_text

Path.write_text(text, encoding=None, errors='strict', linesep='\n', append=False)
Write the given text to this file.

The default behavior is to overwrite any existing file; to append instead, use the append=True keyword
argument.

There are two differences between write_text() and write_bytes(): newline handling and Unicode
handling. See below.

Parameters

4.1. Documentation 47

mutapath, Release 0.17.0

• written. (text - str/unicode - The text to be) –

• used. (encoding - str - The Unicode encoding that will be) – This is ig-
nored if text isn’t a Unicode string.

• errors. (errors - str - How to handle Unicode encoding) – Default is
'strict'. See help(unicode.encode) for the options. This is ignored if text isn’t a
Unicode string.

• of (linesep - keyword argument - str/unicode - The sequence) – characters
to be used to mark end-of-line. The default is os.linesep. You can also specify None to
leave all newlines as they are in text.

• if (append - keyword argument - bool - Specifies what to do) – the file al-
ready exists (True: append to the end of it; False: overwrite it.) The default is False.

— Newline handling.

write_text() converts all standard end-of-line sequences ('\n', '\r', and '\r\n') to your platform’s
default end-of-line sequence (see os.linesep; on Windows, for example, the end-of-line marker is '\r\
n').

If you don’t like your platform’s default, you can override it using the linesep= keyword argument. If you
specifically want write_text() to preserve the newlines as-is, use linesep=None.

This applies to Unicode text the same as to 8-bit text, except there are three additional standard Unicode
end-of-line sequences: u'\x85', u'\r\x85', and u'\u2028'.

(This is slightly different from when you open a file for writing with fopen(filename, "w") in C or
open(filename, 'w') in Python.)

— Unicode

If text isn’t Unicode, then apart from newline handling, the bytes are written verbatim to the file. The
encoding and errors arguments are not used and must be omitted.

If text is Unicode, it is first converted to bytes() using the specified encoding (or the default encoding if
encoding isn’t specified). The errors argument applies only to this conversion.

mutapath.Path.zfill

Path.zfill(width, /)
Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

48 Chapter 4. Hashing

https://docs.python.org/3/library/os.html#os.linesep
https://docs.python.org/3/library/os.html#os.linesep

mutapath, Release 0.17.0

Attributes

anchor The concatenation of the drive and root, or ''.
atime Last access time of the file.
base Get the path base (i.e., the parent of the file).
bytes Read the file as bytes stream and return its content.
ctime Creation time of the file.
cwd Return a new path pointing to the current working di-

rectory (as returned by os.getcwd()).
dirname Returns the directory component of a pathname
drive The drive specifier, for example 'C:'.
ext The file extension, for example '.py'.
home Get the home path of the current path representation.
lock Generate a cached file locker for this file with the ad-

ditional suffix '.lock'.
mtime Last-modified time of the file.
name The final path component, if any.
parent The logical parent of the path.
parents A sequence of this path's logical parents.
parts An object providing sequence-like access to the com-

ponents in the filesystem path.
posix_enabled If set to True, the the representation of this path will

always follow the posix format, even on NT filesys-
tems.

root The root of the path, if any.
size Size of the file, in bytes.
stem The final path component, minus its last suffix.
string_repr_enabled If set to True, the the representation of this path will

always be returned unwrapped as the path's string.
suffix The final component's last suffix, if any.
suffixes A list of the final component's suffixes, if any.
text Read the file as text stream and return its content.
to_pathlib Return the contained path as pathlib.Path representa-

tion.

mutapath.Path.anchor

property Path.anchor

The concatenation of the drive and root, or ‘’.

mutapath.Path.atime

property Path.atime

Last access time of the file.

See also:

getatime(), os.path.getatime()

4.1. Documentation 49

https://docs.python.org/3/library/os.path.html#os.path.getatime

mutapath, Release 0.17.0

mutapath.Path.base

property Path.base: Path

Get the path base (i.e., the parent of the file).

See also:

parent

mutapath.Path.bytes

Path.bytes

Read the file as bytes stream and return its content. This property caches the returned value. Clone this
object to have a new path with a cleared cache or simply use read_bytes().

See also:

pathlib.Path.read_bytes()

mutapath.Path.ctime

property Path.ctime

Creation time of the file.

See also:

getctime(), os.path.getctime()

mutapath.Path.cwd

property Path.cwd

Return a new path pointing to the current working directory (as returned by os.getcwd()).

mutapath.Path.dirname

property Path.dirname: Path

Returns the directory component of a pathname

mutapath.Path.drive

property Path.drive

The drive specifier, for example 'C:'.

This is always empty on systems that don’t use drive specifiers.

50 Chapter 4. Hashing

https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_bytes
https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_bytes
https://docs.python.org/3/library/os.path.html#os.path.getctime

mutapath, Release 0.17.0

mutapath.Path.ext

property Path.ext

The file extension, for example '.py'.

mutapath.Path.home

property Path.home: Path

Get the home path of the current path representation.

Returns
the home path

Example

>>> Path("/home/doe/folder/sub").home
Path("home")

mutapath.Path.lock

Path.lock

Generate a cached file locker for this file with the additional suffix ‘.lock’. If this path refers not to an
existing file or to an existing folder, a dummy lock is returned that does not do anything.

Once this path is modified (cloning != modifying), the lock is released and regenerated for the new path.

Example

>>> my_path = Path('/home/doe/folder/sub')
>>> with my_path.lock:
... my_path.write_text("I can write")

See also:

SoftFileLock, DummyFileLock

mutapath.Path.mtime

property Path.mtime

Last-modified time of the file.

See also:

getmtime(), os.path.getmtime()

4.1. Documentation 51

https://py-filelock.readthedocs.io/en/latest/api.html#filelock.SoftFileLock
https://docs.python.org/3/library/os.path.html#os.path.getmtime

mutapath, Release 0.17.0

mutapath.Path.name

property Path.name: Path

The final path component, if any.

mutapath.Path.parent

property Path.parent: Path

The logical parent of the path.

mutapath.Path.parents

property Path.parents

A sequence of this path’s logical parents.

mutapath.Path.parts

property Path.parts

An object providing sequence-like access to the components in the filesystem path.

mutapath.Path.posix_enabled

property Path.posix_enabled: bool

If set to True, the the representation of this path will always follow the posix format, even on NT filesystems.

mutapath.Path.root

property Path.root

The root of the path, if any.

mutapath.Path.size

property Path.size

Size of the file, in bytes.

See also:

getsize(), os.path.getsize()

mutapath.Path.stem

property Path.stem: str

The final path component, minus its last suffix.

52 Chapter 4. Hashing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/os.path.html#os.path.getsize
https://docs.python.org/3/library/stdtypes.html#str

mutapath, Release 0.17.0

mutapath.Path.string_repr_enabled

property Path.string_repr_enabled: bool

If set to True, the the representation of this path will always be returned unwrapped as the path’s string.

mutapath.Path.suffix

property Path.suffix: str

The final component’s last suffix, if any.

This includes the leading period. For example: ‘.txt’

mutapath.Path.suffixes

property Path.suffixes

A list of the final component’s suffixes, if any.

These include the leading periods. For example: [‘.tar’, ‘.gz’]

mutapath.Path.text

Path.text

Read the file as text stream and return its content. This property caches the returned value. Clone this
object to have a new path with a cleared cache or simply use read_text().

See also:

pathlib.Path.read_text()

mutapath.Path.to_pathlib

property Path.to_pathlib: Path

Return the contained path as pathlib.Path representation. :return: the converted path

4.1.2 mutapath.MutaPath

class mutapath.MutaPath(contained: MutaPath | Path | Path | PurePath | str = '', *, posix: bool | None = None,
string_repr: bool | None = None)

Bases: Path

Mutable Path

__init__(contained: MutaPath | Path | Path | PurePath | str = '', *, posix: bool | None = None, string_repr:
bool | None = None)

4.1. Documentation 53

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_text
https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_text
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://path.readthedocs.io/en/stable/api.html#path.Path
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://path.readthedocs.io/en/stable/api.html#path.Path
https://docs.python.org/3/library/pathlib.html#pathlib.PurePath
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

mutapath, Release 0.17.0

Methods

absolute() Return an absolute version of this path.
abspath () Return an absolute path.
access(mode) Return True if current user has access to this path.
as_posix() Return the string representation of the path with for-

ward (/) slashes.
as_uri() Return the path as a 'file' URI.
basename()

See also:
name, os.path.basename()

capitalize() Return a capitalized version of the string.
casefold() Return a version of the string suitable for caseless

comparisons.
cd() Change the current working directory to the specified

path.
center(width[, fillchar]) Return a centered string of length width.
chdir() Change the current working directory to the specified

path.
chmod(mode) Set the mode.
chown([uid, gid]) Change the owner and group by names rather than the

uid or gid numbers.
chroot() Change root directory to path.
chunks(size, *args, **kwargs) Returns a generator yielding chunks of the file, so it

can
clone(contained) Clone this path with a new given wrapped path rep-

resentation, having the same remaining attributes.
copy(dst, *[, follow_symlinks]) Copy data and mode bits ("cp src dst").
copy2(dst, *[, follow_symlinks]) Copy data and metadata.
copyfile(dst, *[, follow_symlinks]) Copy data from src to dst in the most efficient way

possible.
copying([lock, timeout, method]) Create a copying context for this immutable path.
copymode(dst, *[, follow_symlinks]) Copy mode bits from src to dst.
copystat(dst, *[, follow_symlinks]) Copy file metadata
copytree(dst[, symlinks, ignore, ...]) Recursively copy a directory tree and return the des-

tination directory.
count(sub[, start[, end]]) Return the number of non-overlapping occurrences of

substring sub in string S[start:end].
dirs() The elements of the list are Path objects.
encode([encoding, errors]) Encode the string using the codec registered for en-

coding.
endswith (suffix[, start[, end]]) Return True if S ends with the specified suffix, False

otherwise.
exists() Test whether a path exists.
expand() Clean up a filename by calling expandvars(),

expanduser(), and normpath() on it.
expandtabs([tabsize]) Return a copy where all tab characters are expanded

using spaces.
expanduser() Expand ~ and ~user constructions.
expandvars() Expand shell variables of form $var and ${var}.
files() The elements of the list are Path objects.

continues on next page

54 Chapter 4. Hashing

https://docs.python.org/3/library/os.path.html#os.path.basename

mutapath, Release 0.17.0

Table 2 – continued from previous page
find(sub[, start[, end]]) Return the lowest index in S where substring sub is

found, such that sub is contained within S[start:end].
fnmatch (pattern[, normcase]) Return True if self.name matches the given pattern.
format(*args, **kwargs) Return a formatted version of S, using substitutions

from args and kwargs.
format_map(mapping) Return a formatted version of S, using substitutions

from mapping.
get_owner() Return the name of the owner of this file or directory.
getatime()

See also:
atime, os.path.getatime()

getctime()
See also:
ctime, os.path.getctime()

getcwd()
See also:
pathlib.Path.cwd()

getmtime()
See also:
mtime, os.path.getmtime()

getsize()
See also:
size, os.path.getsize()

glob(pattern)
See also:
pathlib.Path.glob()

group() Return the group name of the file gid.
iglob(pattern) Return an iterator of Path objects that match the pat-

tern.
in_place([mode, buffering, encoding, ...]) A context in which a file may be re-written in-place

with new content.
index(sub[, start[, end]]) Return the lowest index in S where substring sub is

found, such that sub is contained within S[start:end].
is_absolute() True if the path is absolute (has both a root and, if

applicable, a drive).
is_block_device() Whether this path is a block device.
is_char_device() Whether this path is a character device.
is_dir() Whether this path is a directory.
is_fifo() Whether this path is a FIFO.
is_file() Whether this path is a regular file (also True for sym-

links pointing to regular files).
is_mount() Check if this path is a POSIX mount point
is_reserved() Return True if the path contains one of the special

names reserved by the system, if any.
is_socket() Whether this path is a socket.
is_symlink() Whether this path is a symbolic link.

continues on next page

4.1. Documentation 55

https://docs.python.org/3/library/os.path.html#os.path.getatime
https://docs.python.org/3/library/os.path.html#os.path.getctime
https://docs.python.org/3/library/os.path.html#os.path.getmtime
https://docs.python.org/3/library/os.path.html#os.path.getsize
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob

mutapath, Release 0.17.0

Table 2 – continued from previous page
isabs() Test whether a path is absolute
isalnum() Return True if the string is an alpha-numeric string,

False otherwise.
isalpha() Return True if the string is an alphabetic string, False

otherwise.
isascii() Return True if all characters in the string are ASCII,

False otherwise.
isdecimal() Return True if the string is a decimal string, False oth-

erwise.
isdigit() Return True if the string is a digit string, False other-

wise.
isdir() Return true if the pathname refers to an existing di-

rectory.
isfile() Test whether a path is a regular file
isidentifier() Return True if the string is a valid Python identifier,

False otherwise.
islink() Test whether a path is a symbolic link
islower() Return True if the string is a lowercase string, False

otherwise.
ismount() Test whether a path is a mount point
isnumeric() Return True if the string is a numeric string, False

otherwise.
isprintable() Return True if the string is printable, False otherwise.
isspace() Return True if the string is a whitespace string, False

otherwise.
istitle() Return True if the string is a title-cased string, False

otherwise.
isupper() Return True if the string is an uppercase string, False

otherwise.
iterdir() Iterate over the files in this directory.
join(iterable, /) Concatenate any number of strings.
joinpath (*others) partial(func, *args, **keywords) - new function with

partial application of the given arguments and key-
words.

lchmod(mode) Like chmod(), except if the path points to a symlink,
the symlink's permissions are changed, rather than its
target's.

lines([encoding, errors, retain]) Open this file, read all lines, return them in a list.
link(newpath) Create a hard link at newpath, pointing to this file.
link_to(target) Make the target path a hard link pointing to this path.
listdir() Use files() or dirs() instead if you want a listing

of just files or just subdirectories.
ljust(width[, fillchar]) Return a left-justified string of length width.
lower() Return a copy of the string converted to lowercase.
lstat() Like stat(), but do not follow symbolic links.
lstrip([chars]) Return a copy of the string with leading whitespace

removed.
makedirs(name [[, mode, exist_ok]) Super-mkdir; create a leaf directory and all interme-

diate ones.
makedirs_p([mode]) Like makedirs(), but does not raise an exception if

the directory already exists.
match (path_pattern) Return True if this path matches the given pattern.

continues on next page

56 Chapter 4. Hashing

mutapath, Release 0.17.0

Table 2 – continued from previous page
merge_tree(other, *args, **kwargs) Move, merge and mutate this path to the given other

path.
mkdir([mode]) Create a directory.
mkdir_p([mode]) Like mkdir(), but does not raise an exception if the

directory already exists.
move(dst[, copy_function]) Recursively move a file or directory to another loca-

tion.
moving([lock, timeout, method]) Create a moving context for this immutable path.
mutate() Create a mutable context for this immutable path.
normcase() Normalize case of pathname.
normpath () Normalize path, eliminating double slashes, etc.
open(*args, **kwargs) Open file and return a stream.
partition(sep, /) Partition the string into three parts using the given

separator.
pathconf (name) Return the configuration limit name for the file or di-

rectory path.
posix_string() Get this path as string with posix-like separators (i.e.,

'/').
read_bytes() Return the contents of this file as bytes.
read_hash (hash_name) Calculate given hash for this file.
read_hexhash (hash_name) Calculate given hash for this file, returning hexdigest.
read_md5() Calculate the md5 hash for this file.
read_text([encoding, errors]) Open this file, read it in, return the content as a string.
readlink() Return the path to which this symbolic link points.
readlinkabs() Return the path to which this symbolic link points.
realpath () Return the canonical path of the specified filename,

eliminating any symbolic links encountered in the
path.

relative_to(*other) Return the relative path to another path identified by
the passed arguments.

relpath ([start]) Return this path as a relative path, based from start,
which defaults to the current working directory.

relpathto(dest) Return a relative path from self to dest.
remove() Remove a file (same as unlink()).
remove_p() Like remove(), but does not raise an exception if the

file does not exist.
removedirs(name) Super-rmdir; remove a leaf directory and all empty

intermediate ones.
removedirs_p() Like removedirs(), but does not raise an exception

if the directory is not empty or does not exist.
rename(new) Rename a file or directory.
renames(old, new) Super-rename; create directories as necessary and

delete any left empty.
renaming([lock, timeout, method]) Create a renaming context for this immutable path.
replace(old, new[, count]) Return a copy with all occurrences of substring old

replaced by new.
resolve([strict]) Make the path absolute, resolving all symlinks on

the way and also normalizing it (for example turning
slashes into backslashes under Windows).

rfind(sub[, start[, end]]) Return the highest index in S where substring sub is
found, such that sub is contained within S[start:end].

continues on next page

4.1. Documentation 57

mutapath, Release 0.17.0

Table 2 – continued from previous page
rglob(pattern) Recursively yield all existing files (of any kind, in-

cluding directories) matching the given relative pat-
tern, anywhere in this subtree.

rindex(sub[, start[, end]]) Return the highest index in S where substring sub is
found, such that sub is contained within S[start:end].

rjust(width[, fillchar]) Return a right-justified string of length width.
rmdir() Remove a directory.
rmdir_p() Like rmdir(), but does not raise an exception if the

directory is not empty or does not exist.
rmtree([ignore_errors, onerror]) Recursively delete a directory tree.
rmtree_p() Like rmtree(), but does not raise an exception if the

directory does not exist.
rpartition(sep, /) Partition the string into three parts using the given

separator.
rsplit([sep, maxsplit]) Return a list of the words in the string, using sep as

the delimiter string.
rstrip([chars]) Return a copy of the string with trailing whitespace

removed.
samefile(other) Test whether two pathnames reference the same ac-

tual file or directory
split([sep, maxsplit]) Return a list of the words in the string, using sep as

the delimiter string.
splitall() Return a list of the path components in this path.
splitdrive() Split the drive specifier from this path.
splitext() Split the filename extension from this path and return

the two parts.
splitlines([keepends]) Return a list of the lines in the string, breaking at line

boundaries.
splitpath ()

See also:
parent, name, os.path.split()

startfile() Open this path in a platform-dependant manner.
startswith (prefix[, start[, end]]) Return True if S starts with the specified prefix, False

otherwise.
stat() Perform a stat() system call on this path.
statvfs() Perform a statvfs() system call on this path.
strip([chars]) Return a copy of the string with leading and trailing

whitespace removed.
stripext() For example, Path('/home/guido/python.tar.

gz').stripext() returns Path('/home/guido/
python.tar').

swapcase() Convert uppercase characters to lowercase and low-
ercase characters to uppercase.

symlink([newlink]) Create a symbolic link at newlink, pointing here.
symlink_to(target[, target_is_directory]) Make this path a symlink pointing to the target path.
title() Return a version of the string where each word is ti-

tlecased.
touch () Set the access/modified times of this file to the current

time.
translate(table, /) Replace each character in the string using the given

translation table.
continues on next page

58 Chapter 4. Hashing

https://docs.python.org/3/library/os.path.html#os.path.split

mutapath, Release 0.17.0

Table 2 – continued from previous page
unlink() Remove a file (same as remove()).
unlink_p() Like unlink(), but does not raise an exception if the

file does not exist.
upper() Return a copy of the string converted to uppercase.
using_module(module)

utime(times) Set the access and modified times of this file.
walk() The iterator yields Path objects naming each child

item of this directory and its descendants.
walkdirs()

walkfiles()

with_base(base[, strip_length]) Clone this path with a new base.
with_name(new_name)

See also:
pathlib.PurePath.with_name()

with_parent(new_parent) Clone this path with a new parent.
with_poxis_enabled([enable]) Clone this path in posix format with posix-like sepa-

rators (i.e., '/').
with_stem(new_stem) Clone this path with a new stem.
with_string_repr_enabled([enable]) Clone this path in with string representation enabled.
with_suffix(suffix) Return a new path with the file suffix changed (or

added, if none)
write_bytes(bytes[, append]) Open this file and write the given bytes to it.
write_lines(lines[, encoding, errors, ...]) Write the given lines of text to this file.
write_text(text[, encoding, errors, ...]) Write the given text to this file.
zfill(width, /) Pad a numeric string with zeros on the left, to fill a

field of the given width.

mutapath.MutaPath.absolute

MutaPath.absolute()

Return an absolute version of this path. This function works even if the path doesn’t point to anything.

No normalization is done, i.e. all ‘.’ and ‘..’ will be kept along. Use resolve() to get the canonical path to
a file.

4.1. Documentation 59

mutapath, Release 0.17.0

mutapath.MutaPath.abspath

MutaPath.abspath()

Return an absolute path.

mutapath.MutaPath.access

MutaPath.access(mode)
Return True if current user has access to this path.

mode - One of the constants os.F_OK, os.R_OK, os.W_OK, os.X_OK

See also:

os.access()

mutapath.MutaPath.as_posix

MutaPath.as_posix()

Return the string representation of the path with forward (/) slashes.

mutapath.MutaPath.as_uri

MutaPath.as_uri()

Return the path as a ‘file’ URI.

mutapath.MutaPath.basename

MutaPath.basename()

See also:

name, os.path.basename()

mutapath.MutaPath.capitalize

MutaPath.capitalize()

Return a capitalized version of the string.

More specifically, make the first character have upper case and the rest lower case.

mutapath.MutaPath.casefold

MutaPath.casefold()

Return a version of the string suitable for caseless comparisons.

60 Chapter 4. Hashing

https://docs.python.org/3/library/os.html#os.F_OK
https://docs.python.org/3/library/os.html#os.R_OK
https://docs.python.org/3/library/os.html#os.W_OK
https://docs.python.org/3/library/os.html#os.X_OK
https://docs.python.org/3/library/os.html#os.access
https://docs.python.org/3/library/os.path.html#os.path.basename

mutapath, Release 0.17.0

mutapath.MutaPath.cd

MutaPath.cd()

Change the current working directory to the specified path.

path may always be specified as a string. On some platforms, path may also be specified as an open file
descriptor.

If this functionality is unavailable, using it raises an exception.

mutapath.MutaPath.center

MutaPath.center(width, fillchar=' ', /)
Return a centered string of length width.

Padding is done using the specified fill character (default is a space).

mutapath.MutaPath.chdir

MutaPath.chdir()

Change the current working directory to the specified path.

path may always be specified as a string. On some platforms, path may also be specified as an open file
descriptor.

If this functionality is unavailable, using it raises an exception.

mutapath.MutaPath.chmod

MutaPath.chmod(mode)
Set the mode. May be the new mode (os.chmod behavior) or a symbolic mode.

See also:

os.chmod()

mutapath.MutaPath.chown

MutaPath.chown(uid=-1, gid=-1)
Change the owner and group by names rather than the uid or gid numbers.

See also:

os.chown()

4.1. Documentation 61

http://en.wikipedia.org/wiki/Chmod#Symbolic_modes
https://docs.python.org/3/library/os.html#os.chmod
https://docs.python.org/3/library/os.html#os.chown

mutapath, Release 0.17.0

mutapath.MutaPath.chroot

MutaPath.chroot()

Change root directory to path.

mutapath.MutaPath.chunks

MutaPath.chunks(size, *args, **kwargs)

Returns a generator yielding chunks of the file, so it can
be read piece by piece with a simple for loop.

Any argument you pass after size will be passed to open().

Example

>>> hash = hashlib.md5()
>>> for chunk in Path("CHANGES.rst").chunks(8192, mode='rb'):
... hash.update(chunk)

This will read the file by chunks of 8192 bytes.

mutapath.MutaPath.clone

MutaPath.clone(contained)→ Path
Clone this path with a new given wrapped path representation, having the same remaining attributes. :param
contained: the new contained path element :return: the cloned path

mutapath.MutaPath.copy

MutaPath.copy(dst, *, follow_symlinks=True)
Copy data and mode bits (“cp src dst”). Return the file’s destination.

The destination may be a directory.

If follow_symlinks is false, symlinks won’t be followed. This resembles GNU’s “cp -P src dst”.

If source and destination are the same file, a SameFileError will be raised.

mutapath.MutaPath.copy2

MutaPath.copy2(dst, *, follow_symlinks=True)
Copy data and metadata. Return the file’s destination.

Metadata is copied with copystat(). Please see the copystat function for more information.

The destination may be a directory.

If follow_symlinks is false, symlinks won’t be followed. This resembles GNU’s “cp -P src dst”.

62 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.MutaPath.copyfile

MutaPath.copyfile(dst, *, follow_symlinks=True)
Copy data from src to dst in the most efficient way possible.

If follow_symlinks is not set and src is a symbolic link, a new symlink will be created instead of copying
the file it points to.

mutapath.MutaPath.copying

MutaPath.copying(lock=True, timeout=1, method: ~typing.Callable[[~mutapath.immutapath.Path,
~mutapath.immutapath.Path], ~mutapath.immutapath.Path] = <function copy>)

Create a copying context for this immutable path. The external value is only changed if the copying suc-
ceeds.

Parameters

• timeout – the timeout in seconds how long the lock file should be acquired

• lock – if the source file should be locked as long as this context is open

• method – an alternative method that copies the path and returns the new path (e.g.,
shutil.copy2)

Example

>>> with Path('/home/doe/folder/a.txt').copying() as mut:
... mut.stem = "b"
Path('/home/doe/folder/b.txt')

mutapath.MutaPath.copymode

MutaPath.copymode(dst, *, follow_symlinks=True)
Copy mode bits from src to dst.

If follow_symlinks is not set, symlinks aren’t followed if and only if both src and dst are symlinks. If
lchmod isn’t available (e.g. Linux) this method does nothing.

mutapath.MutaPath.copystat

MutaPath.copystat(dst, *, follow_symlinks=True)
Copy file metadata

Copy the permission bits, last access time, last modification time, and flags from src to dst. On Linux,
copystat() also copies the “extended attributes” where possible. The file contents, owner, and group are
unaffected. src and dst are path-like objects or path names given as strings.

If the optional flag follow_symlinks is not set, symlinks aren’t followed if and only if both src and dst are
symlinks.

4.1. Documentation 63

mutapath, Release 0.17.0

mutapath.MutaPath.copytree

MutaPath.copytree(dst, symlinks=False, ignore=None, copy_function=<function copy2>,
ignore_dangling_symlinks=False, dirs_exist_ok=False)

Recursively copy a directory tree and return the destination directory.

dirs_exist_ok dictates whether to raise an exception in case dst or any missing parent directory already
exists.

If exception(s) occur, an Error is raised with a list of reasons.

If the optional symlinks flag is true, symbolic links in the source tree result in symbolic links in the desti-
nation tree; if it is false, the contents of the files pointed to by symbolic links are copied. If the file pointed
by the symlink doesn’t exist, an exception will be added in the list of errors raised in an Error exception at
the end of the copy process.

You can set the optional ignore_dangling_symlinks flag to true if you want to silence this exception. Notice
that this has no effect on platforms that don’t support os.symlink.

The optional ignore argument is a callable. If given, it is called with the src parameter, which is the directory
being visited by copytree(), and names which is the list of src contents, as returned by os.listdir():

callable(src, names) -> ignored_names

Since copytree() is called recursively, the callable will be called once for each directory that is copied. It
returns a list of names relative to the src directory that should not be copied.

The optional copy_function argument is a callable that will be used to copy each file. It will be called with
the source path and the destination path as arguments. By default, copy2() is used, but any function that
supports the same signature (like copy()) can be used.

mutapath.MutaPath.count

MutaPath.count(sub[, start[, end]])→ int
Return the number of non-overlapping occurrences of substring sub in string S[start:end]. Optional argu-
ments start and end are interpreted as in slice notation.

mutapath.MutaPath.dirs

MutaPath.dirs()→ List of this directory's subdirectories.
The elements of the list are Path objects. This does not walk recursively into subdirectories (but see
walkdirs()).

Accepts parameters to listdir().

mutapath.MutaPath.encode

MutaPath.encode(encoding='utf-8', errors='strict')
Encode the string using the codec registered for encoding.

encoding
The encoding in which to encode the string.

64 Chapter 4. Hashing

https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

errors
The error handling scheme to use for encoding errors. The default is ‘strict’ meaning that encoding er-
rors raise a UnicodeEncodeError. Other possible values are ‘ignore’, ‘replace’ and ‘xmlcharrefreplace’
as well as any other name registered with codecs.register_error that can handle UnicodeEncodeErrors.

mutapath.MutaPath.endswith

MutaPath.endswith(suffix[, start[, end]])→ bool
Return True if S ends with the specified suffix, False otherwise. With optional start, test S beginning at that
position. With optional end, stop comparing S at that position. suffix can also be a tuple of strings to try.

mutapath.MutaPath.exists

MutaPath.exists()

Test whether a path exists. Returns False for broken symbolic links

mutapath.MutaPath.expand

MutaPath.expand()

Clean up a filename by calling expandvars(), expanduser(), and normpath() on it.

This is commonly everything needed to clean up a filename read from a configuration file, for example.

mutapath.MutaPath.expandtabs

MutaPath.expandtabs(tabsize=8)
Return a copy where all tab characters are expanded using spaces.

If tabsize is not given, a tab size of 8 characters is assumed.

mutapath.MutaPath.expanduser

MutaPath.expanduser()

Expand ~ and ~user constructions. If user or $HOME is unknown, do nothing.

mutapath.MutaPath.expandvars

MutaPath.expandvars()

Expand shell variables of form $var and ${var}. Unknown variables are left unchanged.

4.1. Documentation 65

https://docs.python.org/3/library/functions.html#bool

mutapath, Release 0.17.0

mutapath.MutaPath.files

MutaPath.files()→ List of the files in this directory.
The elements of the list are Path objects. This does not walk into subdirectories (see walkfiles()).

Accepts parameters to listdir().

mutapath.MutaPath.find

MutaPath.find(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

mutapath.MutaPath.fnmatch

MutaPath.fnmatch(pattern, normcase=None)
Return True if self.name matches the given pattern.

pattern - A filename pattern with wildcards,
for example '*.py'. If the pattern contains a normcase attribute, it is applied to the name and path
prior to comparison.

normcase - (optional) A function used to normalize the pattern and
filename before matching. Defaults to self.module(), which defaults to os.path.normcase().

See also:

fnmatch.fnmatch()

mutapath.MutaPath.format

MutaPath.format(*args, **kwargs)→ str
Return a formatted version of S, using substitutions from args and kwargs. The substitutions are identified
by braces (‘{’ and ‘}’).

mutapath.MutaPath.format_map

MutaPath.format_map(mapping)→ str
Return a formatted version of S, using substitutions from mapping. The substitutions are identified by
braces (‘{’ and ‘}’).

66 Chapter 4. Hashing

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/fnmatch.html#fnmatch.fnmatch
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

mutapath, Release 0.17.0

mutapath.MutaPath.get_owner

MutaPath.get_owner()

Return the name of the owner of this file or directory. Follow symbolic links.

See also:

owner

mutapath.MutaPath.getatime

MutaPath.getatime()

See also:

atime, os.path.getatime()

mutapath.MutaPath.getctime

MutaPath.getctime()

See also:

ctime, os.path.getctime()

mutapath.MutaPath.getcwd

classmethod MutaPath.getcwd()→ Path

See also:

pathlib.Path.cwd()

mutapath.MutaPath.getmtime

MutaPath.getmtime()

See also:

mtime, os.path.getmtime()

mutapath.MutaPath.getsize

MutaPath.getsize()

See also:

size, os.path.getsize()

4.1. Documentation 67

https://docs.python.org/3/library/os.path.html#os.path.getatime
https://docs.python.org/3/library/os.path.html#os.path.getctime
https://docs.python.org/3/library/os.path.html#os.path.getmtime
https://docs.python.org/3/library/os.path.html#os.path.getsize

mutapath, Release 0.17.0

mutapath.MutaPath.glob

MutaPath.glob(pattern)→ Iterable[Path]

See also:

pathlib.Path.glob()

mutapath.MutaPath.group

MutaPath.group()

Return the group name of the file gid.

mutapath.MutaPath.iglob

MutaPath.iglob(pattern)
Return an iterator of Path objects that match the pattern.

pattern - a path relative to this directory, with wildcards.

For example, Path('/users').iglob('*/bin/*') returns an iterator of all the files users have in their
bin directories.

See also:

glob.iglob()

Note: Glob is not recursive, even when using **. To do recursive globbing see walk(), walkdirs() or
walkfiles().

mutapath.MutaPath.in_place

MutaPath.in_place(mode='r', buffering=-1, encoding=None, errors=None, newline=None,
backup_extension=None)

A context in which a file may be re-written in-place with new content.

Yields a tuple of (readable, writable) file objects, where writable replaces readable.

If an exception occurs, the old file is restored, removing the written data.

Mode must not use 'w', 'a', or '+'; only read-only-modes are allowed. A ValueError is raised on
invalid modes.

For example, to add line numbers to a file:

p = Path(filename)
assert p.isfile()
with p.in_place() as (reader, writer):

for number, line in enumerate(reader, 1):
writer.write('{0:3}: '.format(number)))
writer.write(line)

Thereafter, the file at filename will have line numbers in it.

68 Chapter 4. Hashing

https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/pathlib.html#pathlib.Path.glob
https://docs.python.org/3/library/glob.html#glob.iglob
https://docs.python.org/3/library/exceptions.html#ValueError

mutapath, Release 0.17.0

mutapath.MutaPath.index

MutaPath.index(sub[, start[, end]])→ int
Return the lowest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

mutapath.MutaPath.is_absolute

MutaPath.is_absolute()

True if the path is absolute (has both a root and, if applicable, a drive).

mutapath.MutaPath.is_block_device

MutaPath.is_block_device()

Whether this path is a block device.

mutapath.MutaPath.is_char_device

MutaPath.is_char_device()

Whether this path is a character device.

mutapath.MutaPath.is_dir

MutaPath.is_dir()

Whether this path is a directory.

mutapath.MutaPath.is_fifo

MutaPath.is_fifo()

Whether this path is a FIFO.

mutapath.MutaPath.is_file

MutaPath.is_file()

Whether this path is a regular file (also True for symlinks pointing to regular files).

mutapath.MutaPath.is_mount

MutaPath.is_mount()

Check if this path is a POSIX mount point

4.1. Documentation 69

https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

mutapath.MutaPath.is_reserved

MutaPath.is_reserved()

Return True if the path contains one of the special names reserved by the system, if any.

mutapath.MutaPath.is_socket

MutaPath.is_socket()

Whether this path is a socket.

mutapath.MutaPath.is_symlink

MutaPath.is_symlink()

Whether this path is a symbolic link.

mutapath.MutaPath.isabs

MutaPath.isabs()

Test whether a path is absolute

mutapath.MutaPath.isalnum

MutaPath.isalnum()

Return True if the string is an alpha-numeric string, False otherwise.

A string is alpha-numeric if all characters in the string are alpha-numeric and there is at least one character
in the string.

mutapath.MutaPath.isalpha

MutaPath.isalpha()

Return True if the string is an alphabetic string, False otherwise.

A string is alphabetic if all characters in the string are alphabetic and there is at least one character in the
string.

mutapath.MutaPath.isascii

MutaPath.isascii()

Return True if all characters in the string are ASCII, False otherwise.

ASCII characters have code points in the range U+0000-U+007F. Empty string is ASCII too.

70 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.MutaPath.isdecimal

MutaPath.isdecimal()

Return True if the string is a decimal string, False otherwise.

A string is a decimal string if all characters in the string are decimal and there is at least one character in
the string.

mutapath.MutaPath.isdigit

MutaPath.isdigit()

Return True if the string is a digit string, False otherwise.

A string is a digit string if all characters in the string are digits and there is at least one character in the
string.

mutapath.MutaPath.isdir

MutaPath.isdir()

Return true if the pathname refers to an existing directory.

mutapath.MutaPath.isfile

MutaPath.isfile()

Test whether a path is a regular file

mutapath.MutaPath.isidentifier

MutaPath.isidentifier()

Return True if the string is a valid Python identifier, False otherwise.

Call keyword.iskeyword(s) to test whether string s is a reserved identifier, such as “def” or “class”.

mutapath.MutaPath.islink

MutaPath.islink()

Test whether a path is a symbolic link

mutapath.MutaPath.islower

MutaPath.islower()

Return True if the string is a lowercase string, False otherwise.

A string is lowercase if all cased characters in the string are lowercase and there is at least one cased character
in the string.

4.1. Documentation 71

mutapath, Release 0.17.0

mutapath.MutaPath.ismount

MutaPath.ismount()

Test whether a path is a mount point

mutapath.MutaPath.isnumeric

MutaPath.isnumeric()

Return True if the string is a numeric string, False otherwise.

A string is numeric if all characters in the string are numeric and there is at least one character in the string.

mutapath.MutaPath.isprintable

MutaPath.isprintable()

Return True if the string is printable, False otherwise.

A string is printable if all of its characters are considered printable in repr() or if it is empty.

mutapath.MutaPath.isspace

MutaPath.isspace()

Return True if the string is a whitespace string, False otherwise.

A string is whitespace if all characters in the string are whitespace and there is at least one character in the
string.

mutapath.MutaPath.istitle

MutaPath.istitle()

Return True if the string is a title-cased string, False otherwise.

In a title-cased string, upper- and title-case characters may only follow uncased characters and lowercase
characters only cased ones.

mutapath.MutaPath.isupper

MutaPath.isupper()

Return True if the string is an uppercase string, False otherwise.

A string is uppercase if all cased characters in the string are uppercase and there is at least one cased
character in the string.

72 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.MutaPath.iterdir

MutaPath.iterdir()

Iterate over the files in this directory. Does not yield any result for the special paths ‘.’ and ‘..’.

mutapath.MutaPath.join

MutaPath.join(iterable, /)
Concatenate any number of strings.

The string whose method is called is inserted in between each given string. The result is returned as a new
string.

Example: ‘.’.join([‘ab’, ‘pq’, ‘rs’]) -> ‘ab.pq.rs’

mutapath.MutaPath.joinpath

MutaPath.joinpath(*others)
partial(func, *args, **keywords) - new function with partial application of the given arguments and key-
words.

mutapath.MutaPath.lchmod

MutaPath.lchmod(mode)
Like chmod(), except if the path points to a symlink, the symlink’s permissions are changed, rather than its
target’s.

mutapath.MutaPath.lines

MutaPath.lines(encoding=None, errors='strict', retain=True)
Open this file, read all lines, return them in a list.

Optional arguments:

encoding - The Unicode encoding (or character set) of
the file. The default is None, meaning the content of the file is read as 8-bit characters and returned
as a list of (non-Unicode) str objects.

errors - How to handle Unicode errors; see help(str.decode)
for the options. Default is 'strict'.

retain - If True, retain newline characters; but all newline
character combinations ('\r', '\n', '\r\n') are translated to '\n'. If False, newline charac-
ters are stripped off. Default is True.

See also:

text()

4.1. Documentation 73

mutapath, Release 0.17.0

mutapath.MutaPath.link

MutaPath.link(newpath)
Create a hard link at newpath, pointing to this file.

See also:

os.link()

mutapath.MutaPath.link_to

MutaPath.link_to(target)
Make the target path a hard link pointing to this path.

Note this function does not make this path a hard link to target, despite the implication of the function and
argument names. The order of arguments (target, link) is the reverse of Path.symlink_to, but matches that
of os.link.

mutapath.MutaPath.listdir

MutaPath.listdir()→ List of items in this directory.
Use files() or dirs() instead if you want a listing of just files or just subdirectories.

The elements of the list are Path objects.

With the optional match argument, a callable, only return items whose names match the given pattern.

See also:

files(), dirs()

mutapath.MutaPath.ljust

MutaPath.ljust(width, fillchar=' ', /)
Return a left-justified string of length width.

Padding is done using the specified fill character (default is a space).

mutapath.MutaPath.lower

MutaPath.lower()

Return a copy of the string converted to lowercase.

mutapath.MutaPath.lstat

MutaPath.lstat()

Like stat(), but do not follow symbolic links.

See also:

stat(), os.lstat()

74 Chapter 4. Hashing

https://docs.python.org/3/library/os.html#os.link
https://docs.python.org/3/library/os.html#os.lstat

mutapath, Release 0.17.0

mutapath.MutaPath.lstrip

MutaPath.lstrip(chars=None, /)
Return a copy of the string with leading whitespace removed.

If chars is given and not None, remove characters in chars instead.

mutapath.MutaPath.makedirs

MutaPath.makedirs(name [, mode=0o777][, exist_ok=False])
Super-mkdir; create a leaf directory and all intermediate ones. Works like mkdir, except that any interme-
diate path segment (not just the rightmost) will be created if it does not exist. If the target directory already
exists, raise an OSError if exist_ok is False. Otherwise no exception is raised. This is recursive.

mutapath.MutaPath.makedirs_p

MutaPath.makedirs_p(mode=511)
Like makedirs(), but does not raise an exception if the directory already exists.

mutapath.MutaPath.match

MutaPath.match(path_pattern)
Return True if this path matches the given pattern.

mutapath.MutaPath.merge_tree

MutaPath.merge_tree(other, *args, **kwargs)
Move, merge and mutate this path to the given other path.

mutapath.MutaPath.mkdir

MutaPath.mkdir(mode=511)
Create a directory.

If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.

dir_fd may not be implemented on your platform.
If it is unavailable, using it will raise a NotImplementedError.

The mode argument is ignored on Windows.

4.1. Documentation 75

mutapath, Release 0.17.0

mutapath.MutaPath.mkdir_p

MutaPath.mkdir_p(mode=511)
Like mkdir(), but does not raise an exception if the directory already exists.

mutapath.MutaPath.move

MutaPath.move(dst, copy_function=<function copy2>)
Recursively move a file or directory to another location. This is similar to the Unix “mv” command. Return
the file or directory’s destination.

If the destination is a directory or a symlink to a directory, the source is moved inside the directory. The
destination path must not already exist.

If the destination already exists but is not a directory, it may be overwritten depending on os.rename()
semantics.

If the destination is on our current filesystem, then rename() is used. Otherwise, src is copied to the desti-
nation and then removed. Symlinks are recreated under the new name if os.rename() fails because of cross
filesystem renames.

The optional copy_function argument is a callable that will be used to copy the source or it will be delegated
to copytree. By default, copy2() is used, but any function that supports the same signature (like copy()) can
be used.

A lot more could be done here. . . A look at a mv.c shows a lot of the issues this implementation glosses
over.

mutapath.MutaPath.moving

MutaPath.moving(lock=True, timeout=1, method: ~typing.Callable[[~os.PathLike, ~os.PathLike], str] =
<function move>)

Create a moving context for this immutable path. The external value is only changed if the moving succeeds.

Parameters

• timeout – the timeout in seconds how long the lock file should be acquired

• lock – if the source file should be locked as long as this context is open

• method – an alternative method that moves the path and returns the new path

Example

>>> with Path('/home/doe/folder/a.txt').moving() as mut:
... mut.stem = "b"
Path('/home/doe/folder/b.txt')

76 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.MutaPath.mutate

MutaPath.mutate()

Create a mutable context for this immutable path.

Example

>>> with Path('/home/doe/folder/sub').mutate() as mut:
... mut.name = "top"
Path('/home/doe/folder/top')

mutapath.MutaPath.normcase

MutaPath.normcase()

Normalize case of pathname. Has no effect under Posix

mutapath.MutaPath.normpath

MutaPath.normpath()

Normalize path, eliminating double slashes, etc.

mutapath.MutaPath.open

MutaPath.open(*args, **kwargs)
Open file and return a stream. Raise OSError upon failure.

file is either a text or byte string giving the name (and the path if the file isn’t in the current working
directory) of the file to be opened or an integer file descriptor of the file to be wrapped. (If a file descriptor
is given, it is closed when the returned I/O object is closed, unless closefd is set to False.)

mode is an optional string that specifies the mode in which the file is opened. It defaults to ‘r’ which means
open for reading in text mode. Other common values are ‘w’ for writing (truncating the file if it already
exists), ‘x’ for creating and writing to a new file, and ‘a’ for appending (which on some Unix systems,
means that all writes append to the end of the file regardless of the current seek position). In text mode,
if encoding is not specified the encoding used is platform dependent: locale.getpreferredencoding(False)
is called to get the current locale encoding. (For reading and writing raw bytes use binary mode and leave
encoding unspecified.) The available modes are:

Character Meaning
‘r’ open for reading (default)
‘w’ open for writing, truncating the file first
‘x’ create a new file and open it for writing
‘a’ open for writing, appending to the end of the file if it exists
‘b’ binary mode
‘t’ text mode (default)
‘+’ open a disk file for updating (reading and writing)
‘U’ universal newline mode (deprecated)

The default mode is ‘rt’ (open for reading text). For binary random access, the mode ‘w+b’ opens and
truncates the file to 0 bytes, while ‘r+b’ opens the file without truncation. The ‘x’ mode implies ‘w’ and
raises an FileExistsError if the file already exists.

4.1. Documentation 77

mutapath, Release 0.17.0

Python distinguishes between files opened in binary and text modes, even when the underlying operating
system doesn’t. Files opened in binary mode (appending ‘b’ to the mode argument) return contents as bytes
objects without any decoding. In text mode (the default, or when ‘t’ is appended to the mode argument), the
contents of the file are returned as strings, the bytes having been first decoded using a platform-dependent
encoding or using the specified encoding if given.

‘U’ mode is deprecated and will raise an exception in future versions of Python. It has no effect in Python
3. Use newline to control universal newlines mode.

buffering is an optional integer used to set the buffering policy. Pass 0 to switch buffering off (only allowed
in binary mode), 1 to select line buffering (only usable in text mode), and an integer > 1 to indicate the size
of a fixed-size chunk buffer. When no buffering argument is given, the default buffering policy works as
follows:

• Binary files are buffered in fixed-size chunks; the size of the buffer is chosen using a heuristic trying
to determine the underlying device’s “block size” and falling back on io.DEFAULT_BUFFER_SIZE.
On many systems, the buffer will typically be 4096 or 8192 bytes long.

• “Interactive” text files (files for which isatty() returns True) use line buffering. Other text files use the
policy described above for binary files.

encoding is the name of the encoding used to decode or encode the file. This should only be used in text
mode. The default encoding is platform dependent, but any encoding supported by Python can be passed.
See the codecs module for the list of supported encodings.

errors is an optional string that specifies how encoding errors are to be handled—this argument should
not be used in binary mode. Pass ‘strict’ to raise a ValueError exception if there is an encoding error (the
default of None has the same effect), or pass ‘ignore’ to ignore errors. (Note that ignoring encoding errors
can lead to data loss.) See the documentation for codecs.register or run ‘help(codecs.Codec)’ for a list of
the permitted encoding error strings.

newline controls how universal newlines works (it only applies to text mode). It can be None, ‘’, ‘n’, ‘r’,
and ‘rn’. It works as follows:

• On input, if newline is None, universal newlines mode is enabled. Lines in the input can end in ‘n’, ‘r’,
or ‘rn’, and these are translated into ‘n’ before being returned to the caller. If it is ‘’, universal newline
mode is enabled, but line endings are returned to the caller untranslated. If it has any of the other legal
values, input lines are only terminated by the given string, and the line ending is returned to the caller
untranslated.

• On output, if newline is None, any ‘n’ characters written are translated to the system default line sep-
arator, os.linesep. If newline is ‘’ or ‘n’, no translation takes place. If newline is any of the other legal
values, any ‘n’ characters written are translated to the given string.

If closefd is False, the underlying file descriptor will be kept open when the file is closed. This does not
work when a file name is given and must be True in that case.

A custom opener can be used by passing a callable as opener. The underlying file descriptor for the file
object is then obtained by calling opener with (file, flags). opener must return an open file descriptor
(passing os.open as opener results in functionality similar to passing None).

open() returns a file object whose type depends on the mode, and through which the standard file operations
such as reading and writing are performed. When open() is used to open a file in a text mode (‘w’, ‘r’, ‘wt’,
‘rt’, etc.), it returns a TextIOWrapper. When used to open a file in a binary mode, the returned class varies:
in read binary mode, it returns a BufferedReader; in write binary and append binary modes, it returns a
BufferedWriter, and in read/write mode, it returns a BufferedRandom.

It is also possible to use a string or bytearray as a file for both reading and writing. For strings StringIO can
be used like a file opened in a text mode, and for bytes a BytesIO can be used like a file opened in a binary
mode.

78 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.MutaPath.partition

MutaPath.partition(sep, /)
Partition the string into three parts using the given separator.

This will search for the separator in the string. If the separator is found, returns a 3-tuple containing the
part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing the original string and two empty strings.

mutapath.MutaPath.pathconf

MutaPath.pathconf(name)
Return the configuration limit name for the file or directory path.

If there is no limit, return -1. On some platforms, path may also be specified as an open file descriptor.

If this functionality is unavailable, using it raises an exception.

mutapath.MutaPath.posix_string

MutaPath.posix_string()→ str
Get this path as string with posix-like separators (i.e., ‘/’).

Example

>>> Path("\home\\doe/folder\sub").with_poxis_enabled()
'/home/joe/doe/folder/sub'

mutapath.MutaPath.read_bytes

MutaPath.read_bytes()

Return the contents of this file as bytes.

mutapath.MutaPath.read_hash

MutaPath.read_hash(hash_name)
Calculate given hash for this file.

List of supported hashes can be obtained from hashlib package. This reads the entire file.

See also:

hashlib.hash.digest()

4.1. Documentation 79

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/hashlib.html#module-hashlib
https://docs.python.org/3/library/hashlib.html#hashlib.hash.digest

mutapath, Release 0.17.0

mutapath.MutaPath.read_hexhash

MutaPath.read_hexhash(hash_name)
Calculate given hash for this file, returning hexdigest.

List of supported hashes can be obtained from hashlib package. This reads the entire file.

See also:

hashlib.hash.hexdigest()

mutapath.MutaPath.read_md5

MutaPath.read_md5()

Calculate the md5 hash for this file.

This reads through the entire file.

See also:

read_hash()

mutapath.MutaPath.read_text

MutaPath.read_text(encoding=None, errors=None)
Open this file, read it in, return the content as a string.

Optional parameters are passed to open().

See also:

lines()

mutapath.MutaPath.readlink

MutaPath.readlink()

Return the path to which this symbolic link points.

The result may be an absolute or a relative path.

See also:

readlinkabs(), os.readlink()

mutapath.MutaPath.readlinkabs

MutaPath.readlinkabs()

Return the path to which this symbolic link points.

The result is always an absolute path.

See also:

readlink(), os.readlink()

80 Chapter 4. Hashing

https://docs.python.org/3/library/hashlib.html#module-hashlib
https://docs.python.org/3/library/hashlib.html#hashlib.hash.hexdigest
https://docs.python.org/3/library/os.html#os.readlink
https://docs.python.org/3/library/os.html#os.readlink

mutapath, Release 0.17.0

mutapath.MutaPath.realpath

MutaPath.realpath()

Return the canonical path of the specified filename, eliminating any symbolic links encountered in the path.

mutapath.MutaPath.relative_to

MutaPath.relative_to(*other)
Return the relative path to another path identified by the passed arguments. If the operation is not possible
(because this is not a subpath of the other path), raise ValueError.

mutapath.MutaPath.relpath

MutaPath.relpath(start='.')
Return this path as a relative path, based from start, which defaults to the current working directory.

mutapath.MutaPath.relpathto

MutaPath.relpathto(dest)
Return a relative path from self to dest.

If there is no relative path from self to dest, for example if they reside on different drives in Windows, then
this returns dest.abspath().

mutapath.MutaPath.remove

MutaPath.remove()

Remove a file (same as unlink()).

If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.

dir_fd may not be implemented on your platform.
If it is unavailable, using it will raise a NotImplementedError.

mutapath.MutaPath.remove_p

MutaPath.remove_p()

Like remove(), but does not raise an exception if the file does not exist.

mutapath.MutaPath.removedirs

MutaPath.removedirs(name)
Super-rmdir; remove a leaf directory and all empty intermediate ones. Works like rmdir except that, if the
leaf directory is successfully removed, directories corresponding to rightmost path segments will be pruned
away until either the whole path is consumed or an error occurs. Errors during this latter phase are ignored
– they generally mean that a directory was not empty.

4.1. Documentation 81

mutapath, Release 0.17.0

mutapath.MutaPath.removedirs_p

MutaPath.removedirs_p()

Like removedirs(), but does not raise an exception if the directory is not empty or does not exist.

mutapath.MutaPath.rename

MutaPath.rename(new)
Rename a file or directory.

If either src_dir_fd or dst_dir_fd is not None, it should be a file
descriptor open to a directory, and the respective path string (src or dst) should be relative; the path
will then be relative to that directory.

src_dir_fd and dst_dir_fd, may not be implemented on your platform.
If they are unavailable, using them will raise a NotImplementedError.

mutapath.MutaPath.renames

MutaPath.renames(old, new)
Super-rename; create directories as necessary and delete any left empty. Works like rename, except creation
of any intermediate directories needed to make the new pathname good is attempted first. After the rename,
directories corresponding to rightmost path segments of the old name will be pruned until either the whole
path is consumed or a nonempty directory is found.

Note: this function can fail with the new directory structure made if you lack permissions needed to unlink
the leaf directory or file.

mutapath.MutaPath.renaming

MutaPath.renaming(lock=True, timeout=1, method: ~typing.Callable[[str, str], None] = <built-in function
rename>)

Create a renaming context for this immutable path. The external value is only changed if the renaming
succeeds.

Parameters

• timeout – the timeout in seconds how long the lock file should be acquired

• lock – if the source file should be locked as long as this context is open

• method – an alternative method that renames the path (e.g., os.renames)

Example

>>> with Path('/home/doe/folder/a.txt').renaming() as mut:
... mut.stem = "b"
Path('/home/doe/folder/b.txt')

82 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.MutaPath.replace

MutaPath.replace(old, new, count=-1, /)
Return a copy with all occurrences of substring old replaced by new.

count
Maximum number of occurrences to replace. -1 (the default value) means replace all occur-
rences.

If the optional argument count is given, only the first count occurrences are replaced.

mutapath.MutaPath.resolve

MutaPath.resolve(strict=False)
Make the path absolute, resolving all symlinks on the way and also normalizing it (for example turning
slashes into backslashes under Windows).

mutapath.MutaPath.rfind

MutaPath.rfind(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Return -1 on failure.

mutapath.MutaPath.rglob

MutaPath.rglob(pattern)
Recursively yield all existing files (of any kind, including directories) matching the given relative pattern,
anywhere in this subtree.

mutapath.MutaPath.rindex

MutaPath.rindex(sub[, start[, end]])→ int
Return the highest index in S where substring sub is found, such that sub is contained within S[start:end].
Optional arguments start and end are interpreted as in slice notation.

Raises ValueError when the substring is not found.

mutapath.MutaPath.rjust

MutaPath.rjust(width, fillchar=' ', /)
Return a right-justified string of length width.

Padding is done using the specified fill character (default is a space).

4.1. Documentation 83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

mutapath.MutaPath.rmdir

MutaPath.rmdir()

Remove a directory.

If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.

dir_fd may not be implemented on your platform.
If it is unavailable, using it will raise a NotImplementedError.

mutapath.MutaPath.rmdir_p

MutaPath.rmdir_p()

Like rmdir(), but does not raise an exception if the directory is not empty or does not exist.

mutapath.MutaPath.rmtree

MutaPath.rmtree(ignore_errors=False, onerror=None)
Recursively delete a directory tree.

If ignore_errors is set, errors are ignored; otherwise, if onerror is set, it is called to handle the error with ar-
guments (func, path, exc_info) where func is platform and implementation dependent; path is the argument
to that function that caused it to fail; and exc_info is a tuple returned by sys.exc_info(). If ignore_errors is
false and onerror is None, an exception is raised.

mutapath.MutaPath.rmtree_p

MutaPath.rmtree_p()

Like rmtree(), but does not raise an exception if the directory does not exist.

mutapath.MutaPath.rpartition

MutaPath.rpartition(sep, /)
Partition the string into three parts using the given separator.

This will search for the separator in the string, starting at the end. If the separator is found, returns a 3-tuple
containing the part before the separator, the separator itself, and the part after it.

If the separator is not found, returns a 3-tuple containing two empty strings and the original string.

mutapath.MutaPath.rsplit

MutaPath.rsplit(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string.

sep
The delimiter according which to split the string. None (the default value) means split ac-
cording to any whitespace, and discard empty strings from the result.

maxsplit
Maximum number of splits to do. -1 (the default value) means no limit.

84 Chapter 4. Hashing

mutapath, Release 0.17.0

Splits are done starting at the end of the string and working to the front.

mutapath.MutaPath.rstrip

MutaPath.rstrip(chars=None, /)
Return a copy of the string with trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

mutapath.MutaPath.samefile

MutaPath.samefile(other)
Test whether two pathnames reference the same actual file or directory

This is determined by the device number and i-node number and raises an exception if an os.stat() call on
either pathname fails.

mutapath.MutaPath.split

MutaPath.split(sep=None, maxsplit=-1)
Return a list of the words in the string, using sep as the delimiter string.

sep
The delimiter according which to split the string. None (the default value) means split according to
any whitespace, and discard empty strings from the result.

maxsplit
Maximum number of splits to do. -1 (the default value) means no limit.

mutapath.MutaPath.splitall

MutaPath.splitall()

Return a list of the path components in this path.

The first item in the list will be a Path. Its value will be either os.curdir, os.pardir, empty, or the root
directory of this path (for example, '/' or 'C:\\'). The other items in the list will be strings.

path.Path.joinpath(*result) will yield the original path.

mutapath.MutaPath.splitdrive

MutaPath.splitdrive()→ Return ``(p.drive, <the rest of p>)``.
Split the drive specifier from this path. If there is no drive specifier, p.drive is empty, so the return value
is simply (Path(''), p). This is always the case on Unix.

See also:

os.path.splitdrive()

4.1. Documentation 85

https://docs.python.org/3/library/os.html#os.curdir
https://docs.python.org/3/library/os.html#os.pardir
https://docs.python.org/3/library/os.path.html#os.path.splitdrive

mutapath, Release 0.17.0

mutapath.MutaPath.splitext

MutaPath.splitext()→ Return ``(p.stripext(), p.ext)``.
Split the filename extension from this path and return the two parts. Either part may be empty.

The extension is everything from '.' to the end of the last path segment. This has the property that if (a,
b) == p.splitext(), then a + b == p.

See also:

os.path.splitext()

mutapath.MutaPath.splitlines

MutaPath.splitlines(keepends=False)
Return a list of the lines in the string, breaking at line boundaries.

Line breaks are not included in the resulting list unless keepends is given and true.

mutapath.MutaPath.splitpath

MutaPath.splitpath()→ Return ``(p.parent, p.name)``.

See also:

parent, name, os.path.split()

mutapath.MutaPath.startfile

MutaPath.startfile()

Open this path in a platform-dependant manner. This method follows the best practice from Openstack.

See also:

os.startfile()

mutapath.MutaPath.startswith

MutaPath.startswith(prefix[, start[, end]])→ bool
Return True if S starts with the specified prefix, False otherwise. With optional start, test S beginning at
that position. With optional end, stop comparing S at that position. prefix can also be a tuple of strings to
try.

mutapath.MutaPath.stat

MutaPath.stat()

Perform a stat() system call on this path.

See also:

lstat(), os.stat()

86 Chapter 4. Hashing

https://docs.python.org/3/library/os.path.html#os.path.splitext
https://docs.python.org/3/library/os.path.html#os.path.split
https://security.openstack.org/guidelines/dg_use-subprocess-securely.html
https://docs.python.org/3/library/os.html#os.startfile
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/os.html#os.stat

mutapath, Release 0.17.0

mutapath.MutaPath.statvfs

MutaPath.statvfs()

Perform a statvfs() system call on this path.

See also:

os.statvfs()

mutapath.MutaPath.strip

MutaPath.strip(chars=None, /)
Return a copy of the string with leading and trailing whitespace removed.

If chars is given and not None, remove characters in chars instead.

mutapath.MutaPath.stripext

MutaPath.stripext()→ Remove one file extension from the path.
For example, Path('/home/guido/python.tar.gz').stripext() returns Path('/home/guido/
python.tar').

mutapath.MutaPath.swapcase

MutaPath.swapcase()

Convert uppercase characters to lowercase and lowercase characters to uppercase.

mutapath.MutaPath.symlink

MutaPath.symlink(newlink=None)
Create a symbolic link at newlink, pointing here.

If newlink is not supplied, the symbolic link will assume the name self.basename(), creating the link in the
cwd.

See also:

os.symlink()

mutapath.MutaPath.symlink_to

MutaPath.symlink_to(target, target_is_directory=False)
Make this path a symlink pointing to the target path. Note the order of arguments (link, target) is the reverse
of os.symlink.

4.1. Documentation 87

https://docs.python.org/3/library/os.html#os.statvfs
https://docs.python.org/3/library/os.html#os.symlink

mutapath, Release 0.17.0

mutapath.MutaPath.title

MutaPath.title()

Return a version of the string where each word is titlecased.

More specifically, words start with uppercased characters and all remaining cased characters have lower
case.

mutapath.MutaPath.touch

MutaPath.touch()

Set the access/modified times of this file to the current time. Create the file if it does not exist.

mutapath.MutaPath.translate

MutaPath.translate(table, /)
Replace each character in the string using the given translation table.

table
Translation table, which must be a mapping of Unicode ordinals to Unicode ordinals, strings,
or None.

The table must implement lookup/indexing via __getitem__, for instance a dictionary or list. If this opera-
tion raises LookupError, the character is left untouched. Characters mapped to None are deleted.

mutapath.MutaPath.unlink

MutaPath.unlink()

Remove a file (same as remove()).

If dir_fd is not None, it should be a file descriptor open to a directory,
and path should be relative; path will then be relative to that directory.

dir_fd may not be implemented on your platform.
If it is unavailable, using it will raise a NotImplementedError.

mutapath.MutaPath.unlink_p

MutaPath.unlink_p()

Like unlink(), but does not raise an exception if the file does not exist.

mutapath.MutaPath.upper

MutaPath.upper()

Return a copy of the string converted to uppercase.

88 Chapter 4. Hashing

mutapath, Release 0.17.0

mutapath.MutaPath.using_module

MutaPath.using_module(module)

mutapath.MutaPath.utime

MutaPath.utime(times)
Set the access and modified times of this file.

See also:

os.utime()

mutapath.MutaPath.walk

MutaPath.walk()→ iterator over files and subdirs, recursively.
The iterator yields Path objects naming each child item of this directory and its descendants. This requires
that D.isdir().

This performs a depth-first traversal of the directory tree. Each directory is returned just before all its
children.

The errors= keyword argument controls behavior when an error occurs. The default is 'strict', which
causes an exception. Other allowed values are 'warn' (which reports the error via warnings.warn()),
and 'ignore'. errors may also be an arbitrary callable taking a msg parameter.

mutapath.MutaPath.walkdirs

MutaPath.walkdirs()→ iterator over subdirs, recursively.

mutapath.MutaPath.walkfiles

MutaPath.walkfiles()→ iterator over files in D, recursively.

mutapath.MutaPath.with_base

MutaPath.with_base(base, strip_length: int = 0)
Clone this path with a new base.

The given path is used in its full length as base of this path, if strip_length is not specified.

Example

>>> Path('/home/doe/folder/sub').with_base("/home/joe")
Path('/home/joe/folder/sub')

If strip_length is specified, the given number of path elements are stripped from the left side, and the given
base is prepended.

Example

>>> Path('/home/doe/folder/sub').with_base("/home/joe", strip_length=1)
Path('/home/joe/doe/folder/sub')

4.1. Documentation 89

https://docs.python.org/3/library/os.html#os.utime
https://docs.python.org/3/library/warnings.html#warnings.warn
https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

mutapath.MutaPath.with_name

MutaPath.with_name(new_name)→ Path

See also:

pathlib.PurePath.with_name()

mutapath.MutaPath.with_parent

MutaPath.with_parent(new_parent)→ Path
Clone this path with a new parent.

mutapath.MutaPath.with_poxis_enabled

MutaPath.with_poxis_enabled(enable: bool = True)→ Path
Clone this path in posix format with posix-like separators (i.e., ‘/’).

Example

>>> Path("\home\\doe/folder\sub").with_poxis_enabled()
Path('/home/joe/doe/folder/sub')

mutapath.MutaPath.with_stem

MutaPath.with_stem(new_stem)→ Path
Clone this path with a new stem.

mutapath.MutaPath.with_string_repr_enabled

MutaPath.with_string_repr_enabled(enable: bool = True)→ Path
Clone this path in with string representation enabled.

Example

>>> Path("/home/doe/folder/sub").with_string_repr_enabled()
'/home/joe/doe/folder/sub'

mutapath.MutaPath.with_suffix

MutaPath.with_suffix(suffix)
Return a new path with the file suffix changed (or added, if none)

>>> Path('/home/guido/python.tar.gz').with_suffix(".foo")
Path('/home/guido/python.tar.foo')

>>> Path('python').with_suffix('.zip')
Path('python.zip')

90 Chapter 4. Hashing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

mutapath, Release 0.17.0

>>> Path('filename.ext').with_suffix('zip')
Traceback (most recent call last):
...
ValueError: Invalid suffix 'zip'

mutapath.MutaPath.write_bytes

MutaPath.write_bytes(bytes, append=False)
Open this file and write the given bytes to it.

Default behavior is to overwrite any existing file. Call p.write_bytes(bytes, append=True) to ap-
pend instead.

mutapath.MutaPath.write_lines

MutaPath.write_lines(lines, encoding=None, errors='strict', linesep='\n', append=False)
Write the given lines of text to this file.

By default this overwrites any existing file at this path.

This puts a platform-specific newline sequence on every line. See linesep below.

lines - A list of strings.

encoding - A Unicode encoding to use. This applies only if
lines contains any Unicode strings.

errors - How to handle errors in Unicode encoding. This
also applies only to Unicode strings.

linesep - The desired line-ending. This line-ending is
applied to every line. If a line already has any standard line ending ('\r', '\n', '\r\n',
u'\x85', u'\r\x85', u'\u2028'), that will be stripped off and this will be used instead.
The default is os.linesep, which is platform-dependent ('\r\n' on Windows, '\n' on Unix,
etc.). Specify None to write the lines as-is, like file.writelines().

Use the keyword argument append=True to append lines to the file. The default is to overwrite the file.

Warning: When you use this with Unicode data, if the encoding of the existing data in the file is
different from the encoding you specify with the encoding= parameter, the result is mixed-encoding
data, which can really confuse someone trying to read the file later.

mutapath.MutaPath.write_text

MutaPath.write_text(text, encoding=None, errors='strict', linesep='\n', append=False)
Write the given text to this file.

The default behavior is to overwrite any existing file; to append instead, use the append=True keyword
argument.

There are two differences between write_text() and write_bytes(): newline handling and Unicode
handling. See below.

Parameters

4.1. Documentation 91

mutapath, Release 0.17.0

• written. (text - str/unicode - The text to be) –

• used. (encoding - str - The Unicode encoding that will be) – This is ig-
nored if text isn’t a Unicode string.

• errors. (errors - str - How to handle Unicode encoding) – Default is
'strict'. See help(unicode.encode) for the options. This is ignored if text isn’t a
Unicode string.

• of (linesep - keyword argument - str/unicode - The sequence) – characters
to be used to mark end-of-line. The default is os.linesep. You can also specify None to
leave all newlines as they are in text.

• if (append - keyword argument - bool - Specifies what to do) – the file al-
ready exists (True: append to the end of it; False: overwrite it.) The default is False.

— Newline handling.

write_text() converts all standard end-of-line sequences ('\n', '\r', and '\r\n') to your platform’s
default end-of-line sequence (see os.linesep; on Windows, for example, the end-of-line marker is '\r\
n').

If you don’t like your platform’s default, you can override it using the linesep= keyword argument. If you
specifically want write_text() to preserve the newlines as-is, use linesep=None.

This applies to Unicode text the same as to 8-bit text, except there are three additional standard Unicode
end-of-line sequences: u'\x85', u'\r\x85', and u'\u2028'.

(This is slightly different from when you open a file for writing with fopen(filename, "w") in C or
open(filename, 'w') in Python.)

— Unicode

If text isn’t Unicode, then apart from newline handling, the bytes are written verbatim to the file. The
encoding and errors arguments are not used and must be omitted.

If text is Unicode, it is first converted to bytes() using the specified encoding (or the default encoding if
encoding isn’t specified). The errors argument applies only to this conversion.

mutapath.MutaPath.zfill

MutaPath.zfill(width, /)
Pad a numeric string with zeros on the left, to fill a field of the given width.

The string is never truncated.

92 Chapter 4. Hashing

https://docs.python.org/3/library/os.html#os.linesep
https://docs.python.org/3/library/os.html#os.linesep

mutapath, Release 0.17.0

Attributes

anchor The concatenation of the drive and root, or ''.
atime Last access time of the file.
base Get the path base (i.e., the parent of the file).
bytes Read the file as bytes stream and return its content.
ctime Creation time of the file.
cwd Return a new path pointing to the current working di-

rectory (as returned by os.getcwd()).
dirname Returns the directory component of a pathname
drive The drive specifier, for example 'C:'.
ext The file extension, for example '.py'.
home Get the home path of the current path representation.
lock Generate a cached file locker for this file with the ad-

ditional suffix '.lock'.
mtime Last-modified time of the file.
name The final path component, if any.
parent The logical parent of the path.
parents A sequence of this path's logical parents.
parts An object providing sequence-like access to the com-

ponents in the filesystem path.
posix_enabled If set to True, the the representation of this path will

always follow the posix format, even on NT filesys-
tems.

root The root of the path, if any.
size Size of the file, in bytes.
stem The final path component, minus its last suffix.
string_repr_enabled If set to True, the the representation of this path will

always be returned unwrapped as the path's string.
suffix The final component's last suffix, if any.
suffixes A list of the final component's suffixes, if any.
text Read the file as text stream and return its content.
to_pathlib Return the contained path as pathlib.Path representa-

tion.

mutapath.MutaPath.anchor

property MutaPath.anchor

The concatenation of the drive and root, or ‘’.

mutapath.MutaPath.atime

property MutaPath.atime

Last access time of the file.

See also:

getatime(), os.path.getatime()

4.1. Documentation 93

https://docs.python.org/3/library/os.path.html#os.path.getatime

mutapath, Release 0.17.0

mutapath.MutaPath.base

property MutaPath.base: Path

Get the path base (i.e., the parent of the file).

See also:

parent

mutapath.MutaPath.bytes

MutaPath.bytes

Read the file as bytes stream and return its content. This property caches the returned value. Clone this
object to have a new path with a cleared cache or simply use read_bytes().

See also:

pathlib.Path.read_bytes()

mutapath.MutaPath.ctime

property MutaPath.ctime

Creation time of the file.

See also:

getctime(), os.path.getctime()

mutapath.MutaPath.cwd

property MutaPath.cwd

Return a new path pointing to the current working directory (as returned by os.getcwd()).

mutapath.MutaPath.dirname

property MutaPath.dirname: Path

Returns the directory component of a pathname

mutapath.MutaPath.drive

property MutaPath.drive

The drive specifier, for example 'C:'.

This is always empty on systems that don’t use drive specifiers.

94 Chapter 4. Hashing

https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_bytes
https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_bytes
https://docs.python.org/3/library/os.path.html#os.path.getctime

mutapath, Release 0.17.0

mutapath.MutaPath.ext

property MutaPath.ext

The file extension, for example '.py'.

mutapath.MutaPath.home

property MutaPath.home: Path

Get the home path of the current path representation.

Returns
the home path

Example

>>> Path("/home/doe/folder/sub").home
Path("home")

mutapath.MutaPath.lock

MutaPath.lock

Generate a cached file locker for this file with the additional suffix ‘.lock’. If this path refers not to an
existing file or to an existing folder, a dummy lock is returned that does not do anything.

Once this path is modified (cloning != modifying), the lock is released and regenerated for the new path.

Example

>>> my_path = Path('/home/doe/folder/sub')
>>> with my_path.lock:
... my_path.write_text("I can write")

See also:

SoftFileLock, DummyFileLock

mutapath.MutaPath.mtime

property MutaPath.mtime

Last-modified time of the file.

See also:

getmtime(), os.path.getmtime()

4.1. Documentation 95

https://py-filelock.readthedocs.io/en/latest/api.html#filelock.SoftFileLock
https://docs.python.org/3/library/os.path.html#os.path.getmtime

mutapath, Release 0.17.0

mutapath.MutaPath.name

property MutaPath.name: Path

The final path component, if any.

mutapath.MutaPath.parent

property MutaPath.parent: Path

The logical parent of the path.

mutapath.MutaPath.parents

property MutaPath.parents

A sequence of this path’s logical parents.

mutapath.MutaPath.parts

property MutaPath.parts

An object providing sequence-like access to the components in the filesystem path.

mutapath.MutaPath.posix_enabled

property MutaPath.posix_enabled: bool

If set to True, the the representation of this path will always follow the posix format, even on NT filesystems.

mutapath.MutaPath.root

property MutaPath.root

The root of the path, if any.

mutapath.MutaPath.size

property MutaPath.size

Size of the file, in bytes.

See also:

getsize(), os.path.getsize()

mutapath.MutaPath.stem

property MutaPath.stem: str

The final path component, minus its last suffix.

96 Chapter 4. Hashing

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/os.path.html#os.path.getsize
https://docs.python.org/3/library/stdtypes.html#str

mutapath, Release 0.17.0

mutapath.MutaPath.string_repr_enabled

property MutaPath.string_repr_enabled: bool

If set to True, the the representation of this path will always be returned unwrapped as the path’s string.

mutapath.MutaPath.suffix

property MutaPath.suffix: str

The final component’s last suffix, if any.

This includes the leading period. For example: ‘.txt’

mutapath.MutaPath.suffixes

property MutaPath.suffixes

A list of the final component’s suffixes, if any.

These include the leading periods. For example: [‘.tar’, ‘.gz’]

mutapath.MutaPath.text

MutaPath.text

Read the file as text stream and return its content. This property caches the returned value. Clone this
object to have a new path with a cleared cache or simply use read_text().

See also:

pathlib.Path.read_text()

mutapath.MutaPath.to_pathlib

property MutaPath.to_pathlib: Path

Return the contained path as pathlib.Path representation. :return: the converted path

4.1.3 mutapath.exceptions.PathException

class mutapath.exceptions.PathException

Bases: BaseException

Exception about inconsistencies between the virtual path and the real file system.

__init__(*args, **kwargs)

4.1. Documentation 97

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_text
https://docs.python.org/3/library/pathlib.html#pathlib.Path.read_text
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/exceptions.html#BaseException

mutapath, Release 0.17.0

4.1.4 mutapath.lock_dummy.DummyFileLock

class mutapath.lock_dummy.DummyFileLock(lock_file: str | os.PathLike[Any], timeout: float = -1, mode: int =
420, thread_local: bool = True)

Bases: BaseFileLock

Create a new lock object.

Parameters

• lock_file – path to the file

• timeout – default timeout when acquiring the lock, in seconds. It will be used as fallback
value in

the acquire method, if no timeout value (None) is given. If you want to disable the timeout, set it to a negative
value. A timeout of 0 means, that there is exactly one attempt to acquire the file lock. :param mode: file
permissions for the lockfile. :param thread_local: Whether this object’s internal context should be thread local
or not. If this is set to False then the lock will be reentrant across threads.

__init__(lock_file: str | os.PathLike[Any], timeout: float = -1, mode: int = 420, thread_local: bool = True)
→ None

Create a new lock object.

Parameters

• lock_file – path to the file

• timeout – default timeout when acquiring the lock, in seconds. It will be used as fallback
value in

the acquire method, if no timeout value (None) is given. If you want to disable the timeout, set it to a
negative value. A timeout of 0 means, that there is exactly one attempt to acquire the file lock. :param
mode: file permissions for the lockfile. :param thread_local: Whether this object’s internal context should
be thread local or not. If this is set to False then the lock will be reentrant across threads.

Methods

acquire([timeout, poll_intervall]) Doing nothing
is_thread_local()

return
a flag indicating if this lock is thread
local or not

release([force]) Doing nothing

98 Chapter 4. Hashing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://py-filelock.readthedocs.io/en/latest/api.html#filelock.BaseFileLock
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None

mutapath, Release 0.17.0

mutapath.lock_dummy.DummyFileLock.acquire

DummyFileLock.acquire(timeout=None, poll_intervall=0.05)
Doing nothing

mutapath.lock_dummy.DummyFileLock.is_thread_local

DummyFileLock.is_thread_local()→ bool

Returns
a flag indicating if this lock is thread local or not

mutapath.lock_dummy.DummyFileLock.release

DummyFileLock.release(force=False)
Doing nothing

Attributes

is_locked A boolean indicating if the lock file is holding the lock
currently.

lock_counter The number of times this lock has been acquired (but
not yet released).

lock_file path to the lock file
timeout the default timeout value, in seconds

mutapath.lock_dummy.DummyFileLock.is_locked

property DummyFileLock.is_locked: bool

A boolean indicating if the lock file is holding the lock currently.

Changed in version 2.0.0: This was previously a method and is now a property.

Type
return

mutapath.lock_dummy.DummyFileLock.lock_counter

property DummyFileLock.lock_counter: int

The number of times this lock has been acquired (but not yet released).

Type
return

4.1. Documentation 99

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int

mutapath, Release 0.17.0

mutapath.lock_dummy.DummyFileLock.lock_file

property DummyFileLock.lock_file: str

path to the lock file

Type
return

mutapath.lock_dummy.DummyFileLock.timeout

property DummyFileLock.timeout: float

the default timeout value, in seconds

New in version 2.0.0.

Type
return

4.2 Indices and tables

• genindex

100 Chapter 4. Hashing

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#float

INDEX

Symbols
__init__() (mutapath.MutaPath method), 53
__init__() (mutapath.Path method), 9
__init__() (mutapath.exceptions.PathException

method), 97
__init__() (mutapath.lock_dummy.DummyFileLock

method), 98

A
absolute() (mutapath.MutaPath method), 59
absolute() (mutapath.Path method), 15
abspath() (mutapath.MutaPath method), 60
abspath() (mutapath.Path method), 16
access() (mutapath.MutaPath method), 60
access() (mutapath.Path method), 16
acquire() (mutapath.lock_dummy.DummyFileLock

method), 99
anchor (mutapath.MutaPath property), 93
anchor (mutapath.Path property), 49
as_posix() (mutapath.MutaPath method), 60
as_posix() (mutapath.Path method), 16
as_uri() (mutapath.MutaPath method), 60
as_uri() (mutapath.Path method), 16
atime (mutapath.MutaPath property), 93
atime (mutapath.Path property), 49

B
base (mutapath.MutaPath property), 94
base (mutapath.Path property), 50
basename() (mutapath.MutaPath method), 60
basename() (mutapath.Path method), 16
bytes (mutapath.MutaPath attribute), 94
bytes (mutapath.Path attribute), 50

C
capitalize() (mutapath.MutaPath method), 60
capitalize() (mutapath.Path method), 16
casefold() (mutapath.MutaPath method), 60
casefold() (mutapath.Path method), 16
cd() (mutapath.MutaPath method), 61
cd() (mutapath.Path method), 17
center() (mutapath.MutaPath method), 61

center() (mutapath.Path method), 17
chdir() (mutapath.MutaPath method), 61
chdir() (mutapath.Path method), 17
chmod() (mutapath.MutaPath method), 61
chmod() (mutapath.Path method), 17
chown() (mutapath.MutaPath method), 61
chown() (mutapath.Path method), 17
chroot() (mutapath.MutaPath method), 62
chroot() (mutapath.Path method), 18
chunks() (mutapath.MutaPath method), 62
chunks() (mutapath.Path method), 18
clone() (mutapath.MutaPath method), 62
clone() (mutapath.Path method), 18
copy() (mutapath.MutaPath method), 62
copy() (mutapath.Path method), 18
copy2() (mutapath.MutaPath method), 62
copy2() (mutapath.Path method), 18
copyfile() (mutapath.MutaPath method), 63
copyfile() (mutapath.Path method), 19
copying() (mutapath.MutaPath method), 63
copying() (mutapath.Path method), 19
copymode() (mutapath.MutaPath method), 63
copymode() (mutapath.Path method), 19
copystat() (mutapath.MutaPath method), 63
copystat() (mutapath.Path method), 19
copytree() (mutapath.MutaPath method), 64
copytree() (mutapath.Path method), 20
count() (mutapath.MutaPath method), 64
count() (mutapath.Path method), 20
ctime (mutapath.MutaPath property), 94
ctime (mutapath.Path property), 50
cwd (mutapath.MutaPath property), 94
cwd (mutapath.Path property), 50

D
dirname (mutapath.MutaPath property), 94
dirname (mutapath.Path property), 50
dirs() (mutapath.MutaPath method), 64
dirs() (mutapath.Path method), 20
drive (mutapath.MutaPath property), 94
drive (mutapath.Path property), 50
DummyFileLock (class in mutapath.lock_dummy), 98

101

mutapath, Release 0.17.0

E
encode() (mutapath.MutaPath method), 64
encode() (mutapath.Path method), 20
endswith() (mutapath.MutaPath method), 65
endswith() (mutapath.Path method), 21
exists() (mutapath.MutaPath method), 65
exists() (mutapath.Path method), 21
expand() (mutapath.MutaPath method), 65
expand() (mutapath.Path method), 21
expandtabs() (mutapath.MutaPath method), 65
expandtabs() (mutapath.Path method), 21
expanduser() (mutapath.MutaPath method), 65
expanduser() (mutapath.Path method), 21
expandvars() (mutapath.MutaPath method), 65
expandvars() (mutapath.Path method), 21
ext (mutapath.MutaPath property), 95
ext (mutapath.Path property), 51

F
files() (mutapath.MutaPath method), 66
files() (mutapath.Path method), 22
find() (mutapath.MutaPath method), 66
find() (mutapath.Path method), 22
fnmatch() (mutapath.MutaPath method), 66
fnmatch() (mutapath.Path method), 22
format() (mutapath.MutaPath method), 66
format() (mutapath.Path method), 22
format_map() (mutapath.MutaPath method), 66
format_map() (mutapath.Path method), 22

G
get_owner() (mutapath.MutaPath method), 67
get_owner() (mutapath.Path method), 23
getatime() (mutapath.MutaPath method), 67
getatime() (mutapath.Path method), 23
getctime() (mutapath.MutaPath method), 67
getctime() (mutapath.Path method), 23
getcwd() (mutapath.MutaPath class method), 67
getcwd() (mutapath.Path class method), 23
getmtime() (mutapath.MutaPath method), 67
getmtime() (mutapath.Path method), 23
getsize() (mutapath.MutaPath method), 67
getsize() (mutapath.Path method), 23
glob() (mutapath.MutaPath method), 68
glob() (mutapath.Path method), 24
group() (mutapath.MutaPath method), 68
group() (mutapath.Path method), 24

H
home (mutapath.MutaPath property), 95
home (mutapath.Path property), 51

I
iglob() (mutapath.MutaPath method), 68

iglob() (mutapath.Path method), 24
in_place() (mutapath.MutaPath method), 68
in_place() (mutapath.Path method), 24
index() (mutapath.MutaPath method), 69
index() (mutapath.Path method), 25
is_absolute() (mutapath.MutaPath method), 69
is_absolute() (mutapath.Path method), 25
is_block_device() (mutapath.MutaPath method), 69
is_block_device() (mutapath.Path method), 25
is_char_device() (mutapath.MutaPath method), 69
is_char_device() (mutapath.Path method), 25
is_dir() (mutapath.MutaPath method), 69
is_dir() (mutapath.Path method), 25
is_fifo() (mutapath.MutaPath method), 69
is_fifo() (mutapath.Path method), 25
is_file() (mutapath.MutaPath method), 69
is_file() (mutapath.Path method), 25
is_locked (mutapath.lock_dummy.DummyFileLock

property), 99
is_mount() (mutapath.MutaPath method), 69
is_mount() (mutapath.Path method), 25
is_reserved() (mutapath.MutaPath method), 70
is_reserved() (mutapath.Path method), 26
is_socket() (mutapath.MutaPath method), 70
is_socket() (mutapath.Path method), 26
is_symlink() (mutapath.MutaPath method), 70
is_symlink() (mutapath.Path method), 26
is_thread_local() (mutap-

ath.lock_dummy.DummyFileLock method),
99

isabs() (mutapath.MutaPath method), 70
isabs() (mutapath.Path method), 26
isalnum() (mutapath.MutaPath method), 70
isalnum() (mutapath.Path method), 26
isalpha() (mutapath.MutaPath method), 70
isalpha() (mutapath.Path method), 26
isascii() (mutapath.MutaPath method), 70
isascii() (mutapath.Path method), 26
isdecimal() (mutapath.MutaPath method), 71
isdecimal() (mutapath.Path method), 27
isdigit() (mutapath.MutaPath method), 71
isdigit() (mutapath.Path method), 27
isdir() (mutapath.MutaPath method), 71
isdir() (mutapath.Path method), 27
isfile() (mutapath.MutaPath method), 71
isfile() (mutapath.Path method), 27
isidentifier() (mutapath.MutaPath method), 71
isidentifier() (mutapath.Path method), 27
islink() (mutapath.MutaPath method), 71
islink() (mutapath.Path method), 27
islower() (mutapath.MutaPath method), 71
islower() (mutapath.Path method), 27
ismount() (mutapath.MutaPath method), 72
ismount() (mutapath.Path method), 28

102 Index

mutapath, Release 0.17.0

isnumeric() (mutapath.MutaPath method), 72
isnumeric() (mutapath.Path method), 28
isprintable() (mutapath.MutaPath method), 72
isprintable() (mutapath.Path method), 28
isspace() (mutapath.MutaPath method), 72
isspace() (mutapath.Path method), 28
istitle() (mutapath.MutaPath method), 72
istitle() (mutapath.Path method), 28
isupper() (mutapath.MutaPath method), 72
isupper() (mutapath.Path method), 28
iterdir() (mutapath.MutaPath method), 73
iterdir() (mutapath.Path method), 29

J
join() (mutapath.MutaPath method), 73
join() (mutapath.Path method), 29
joinpath() (mutapath.MutaPath method), 73
joinpath() (mutapath.Path method), 29

L
lchmod() (mutapath.MutaPath method), 73
lchmod() (mutapath.Path method), 29
lines() (mutapath.MutaPath method), 73
lines() (mutapath.Path method), 29
link() (mutapath.MutaPath method), 74
link() (mutapath.Path method), 30
link_to() (mutapath.MutaPath method), 74
link_to() (mutapath.Path method), 30
listdir() (mutapath.MutaPath method), 74
listdir() (mutapath.Path method), 30
ljust() (mutapath.MutaPath method), 74
ljust() (mutapath.Path method), 30
lock (mutapath.MutaPath attribute), 95
lock (mutapath.Path attribute), 51
lock_counter (mutapath.lock_dummy.DummyFileLock

property), 99
lock_file (mutapath.lock_dummy.DummyFileLock

property), 100
lower() (mutapath.MutaPath method), 74
lower() (mutapath.Path method), 30
lstat() (mutapath.MutaPath method), 74
lstat() (mutapath.Path method), 30
lstrip() (mutapath.MutaPath method), 75
lstrip() (mutapath.Path method), 31

M
makedirs() (mutapath.MutaPath method), 75
makedirs() (mutapath.Path method), 31
makedirs_p() (mutapath.MutaPath method), 75
makedirs_p() (mutapath.Path method), 31
match() (mutapath.MutaPath method), 75
match() (mutapath.Path method), 31
merge_tree() (mutapath.MutaPath method), 75

merge_tree() (mutapath.Path method), 31
mkdir() (mutapath.MutaPath method), 75
mkdir() (mutapath.Path method), 31
mkdir_p() (mutapath.MutaPath method), 76
mkdir_p() (mutapath.Path method), 32
move() (mutapath.MutaPath method), 76
move() (mutapath.Path method), 32
moving() (mutapath.MutaPath method), 76
moving() (mutapath.Path method), 32
mtime (mutapath.MutaPath property), 95
mtime (mutapath.Path property), 51
MutaPath (class in mutapath), 53
mutate() (mutapath.MutaPath method), 77
mutate() (mutapath.Path method), 33

N
name (mutapath.MutaPath property), 96
name (mutapath.Path property), 52
normcase() (mutapath.MutaPath method), 77
normcase() (mutapath.Path method), 33
normpath() (mutapath.MutaPath method), 77
normpath() (mutapath.Path method), 33

O
open() (mutapath.MutaPath method), 77
open() (mutapath.Path method), 33

P
parent (mutapath.MutaPath property), 96
parent (mutapath.Path property), 52
parents (mutapath.MutaPath property), 96
parents (mutapath.Path property), 52
partition() (mutapath.MutaPath method), 79
partition() (mutapath.Path method), 35
parts (mutapath.MutaPath property), 96
parts (mutapath.Path property), 52
Path (class in mutapath), 9
pathconf() (mutapath.MutaPath method), 79
pathconf() (mutapath.Path method), 35
PathException (class in mutapath.exceptions), 97
posix_enabled (mutapath.MutaPath property), 96
posix_enabled (mutapath.Path property), 52
posix_string() (mutapath.MutaPath method), 79
posix_string() (mutapath.Path method), 35

R
read_bytes() (mutapath.MutaPath method), 79
read_bytes() (mutapath.Path method), 35
read_hash() (mutapath.MutaPath method), 79
read_hash() (mutapath.Path method), 35
read_hexhash() (mutapath.MutaPath method), 80
read_hexhash() (mutapath.Path method), 36
read_md5() (mutapath.MutaPath method), 80

Index 103

mutapath, Release 0.17.0

read_md5() (mutapath.Path method), 36
read_text() (mutapath.MutaPath method), 80
read_text() (mutapath.Path method), 36
readlink() (mutapath.MutaPath method), 80
readlink() (mutapath.Path method), 36
readlinkabs() (mutapath.MutaPath method), 80
readlinkabs() (mutapath.Path method), 36
realpath() (mutapath.MutaPath method), 81
realpath() (mutapath.Path method), 37
relative_to() (mutapath.MutaPath method), 81
relative_to() (mutapath.Path method), 37
release() (mutapath.lock_dummy.DummyFileLock

method), 99
relpath() (mutapath.MutaPath method), 81
relpath() (mutapath.Path method), 37
relpathto() (mutapath.MutaPath method), 81
relpathto() (mutapath.Path method), 37
remove() (mutapath.MutaPath method), 81
remove() (mutapath.Path method), 37
remove_p() (mutapath.MutaPath method), 81
remove_p() (mutapath.Path method), 37
removedirs() (mutapath.MutaPath method), 81
removedirs() (mutapath.Path method), 37
removedirs_p() (mutapath.MutaPath method), 82
removedirs_p() (mutapath.Path method), 38
rename() (mutapath.MutaPath method), 82
rename() (mutapath.Path method), 38
renames() (mutapath.MutaPath method), 82
renames() (mutapath.Path method), 38
renaming() (mutapath.MutaPath method), 82
renaming() (mutapath.Path method), 38
replace() (mutapath.MutaPath method), 83
replace() (mutapath.Path method), 39
resolve() (mutapath.MutaPath method), 83
resolve() (mutapath.Path method), 39
rfind() (mutapath.MutaPath method), 83
rfind() (mutapath.Path method), 39
rglob() (mutapath.MutaPath method), 83
rglob() (mutapath.Path method), 39
rindex() (mutapath.MutaPath method), 83
rindex() (mutapath.Path method), 39
rjust() (mutapath.MutaPath method), 83
rjust() (mutapath.Path method), 39
rmdir() (mutapath.MutaPath method), 84
rmdir() (mutapath.Path method), 40
rmdir_p() (mutapath.MutaPath method), 84
rmdir_p() (mutapath.Path method), 40
rmtree() (mutapath.MutaPath method), 84
rmtree() (mutapath.Path method), 40
rmtree_p() (mutapath.MutaPath method), 84
rmtree_p() (mutapath.Path method), 40
root (mutapath.MutaPath property), 96
root (mutapath.Path property), 52
rpartition() (mutapath.MutaPath method), 84

rpartition() (mutapath.Path method), 40
rsplit() (mutapath.MutaPath method), 84
rsplit() (mutapath.Path method), 40
rstrip() (mutapath.MutaPath method), 85
rstrip() (mutapath.Path method), 41

S
samefile() (mutapath.MutaPath method), 85
samefile() (mutapath.Path method), 41
size (mutapath.MutaPath property), 96
size (mutapath.Path property), 52
split() (mutapath.MutaPath method), 85
split() (mutapath.Path method), 41
splitall() (mutapath.MutaPath method), 85
splitall() (mutapath.Path method), 41
splitdrive() (mutapath.MutaPath method), 85
splitdrive() (mutapath.Path method), 41
splitext() (mutapath.MutaPath method), 86
splitext() (mutapath.Path method), 42
splitlines() (mutapath.MutaPath method), 86
splitlines() (mutapath.Path method), 42
splitpath() (mutapath.MutaPath method), 86
splitpath() (mutapath.Path method), 42
startfile() (mutapath.MutaPath method), 86
startfile() (mutapath.Path method), 42
startswith() (mutapath.MutaPath method), 86
startswith() (mutapath.Path method), 42
stat() (mutapath.MutaPath method), 86
stat() (mutapath.Path method), 42
statvfs() (mutapath.MutaPath method), 87
statvfs() (mutapath.Path method), 43
stem (mutapath.MutaPath property), 96
stem (mutapath.Path property), 52
string_repr_enabled (mutapath.MutaPath property),

97
string_repr_enabled (mutapath.Path property), 53
strip() (mutapath.MutaPath method), 87
strip() (mutapath.Path method), 43
stripext() (mutapath.MutaPath method), 87
stripext() (mutapath.Path method), 43
suffix (mutapath.MutaPath property), 97
suffix (mutapath.Path property), 53
suffixes (mutapath.MutaPath property), 97
suffixes (mutapath.Path property), 53
swapcase() (mutapath.MutaPath method), 87
swapcase() (mutapath.Path method), 43
symlink() (mutapath.MutaPath method), 87
symlink() (mutapath.Path method), 43
symlink_to() (mutapath.MutaPath method), 87
symlink_to() (mutapath.Path method), 43

T
text (mutapath.MutaPath attribute), 97
text (mutapath.Path attribute), 53

104 Index

mutapath, Release 0.17.0

timeout (mutapath.lock_dummy.DummyFileLock prop-
erty), 100

title() (mutapath.MutaPath method), 88
title() (mutapath.Path method), 44
to_pathlib (mutapath.MutaPath property), 97
to_pathlib (mutapath.Path property), 53
touch() (mutapath.MutaPath method), 88
touch() (mutapath.Path method), 44
translate() (mutapath.MutaPath method), 88
translate() (mutapath.Path method), 44

U
unlink() (mutapath.MutaPath method), 88
unlink() (mutapath.Path method), 44
unlink_p() (mutapath.MutaPath method), 88
unlink_p() (mutapath.Path method), 44
upper() (mutapath.MutaPath method), 88
upper() (mutapath.Path method), 44
using_module() (mutapath.MutaPath method), 89
using_module() (mutapath.Path method), 45
utime() (mutapath.MutaPath method), 89
utime() (mutapath.Path method), 45

W
walk() (mutapath.MutaPath method), 89
walk() (mutapath.Path method), 45
walkdirs() (mutapath.MutaPath method), 89
walkdirs() (mutapath.Path method), 45
walkfiles() (mutapath.MutaPath method), 89
walkfiles() (mutapath.Path method), 45
with_base() (mutapath.MutaPath method), 89
with_base() (mutapath.Path method), 45
with_name() (mutapath.MutaPath method), 90
with_name() (mutapath.Path method), 46
with_parent() (mutapath.MutaPath method), 90
with_parent() (mutapath.Path method), 46
with_poxis_enabled() (mutapath.MutaPath method),

90
with_poxis_enabled() (mutapath.Path method), 46
with_stem() (mutapath.MutaPath method), 90
with_stem() (mutapath.Path method), 46
with_string_repr_enabled() (mutapath.MutaPath

method), 90
with_string_repr_enabled() (mutapath.Path

method), 46
with_suffix() (mutapath.MutaPath method), 90
with_suffix() (mutapath.Path method), 46
write_bytes() (mutapath.MutaPath method), 91
write_bytes() (mutapath.Path method), 47
write_lines() (mutapath.MutaPath method), 91
write_lines() (mutapath.Path method), 47
write_text() (mutapath.MutaPath method), 91
write_text() (mutapath.Path method), 47

Z
zfill() (mutapath.MutaPath method), 92
zfill() (mutapath.Path method), 48

Index 105

	MutaPath Class
	Path Class
	Locks
	Hashing
	Documentation
	mutapath.Path
	mutapath.Path.absolute
	mutapath.Path.abspath
	mutapath.Path.access
	mutapath.Path.as_posix
	mutapath.Path.as_uri
	mutapath.Path.basename
	mutapath.Path.capitalize
	mutapath.Path.casefold
	mutapath.Path.cd
	mutapath.Path.center
	mutapath.Path.chdir
	mutapath.Path.chmod
	mutapath.Path.chown
	mutapath.Path.chroot
	mutapath.Path.chunks
	mutapath.Path.clone
	mutapath.Path.copy
	mutapath.Path.copy2
	mutapath.Path.copyfile
	mutapath.Path.copying
	mutapath.Path.copymode
	mutapath.Path.copystat
	mutapath.Path.copytree
	mutapath.Path.count
	mutapath.Path.dirs
	mutapath.Path.encode
	mutapath.Path.endswith
	mutapath.Path.exists
	mutapath.Path.expand
	mutapath.Path.expandtabs
	mutapath.Path.expanduser
	mutapath.Path.expandvars
	mutapath.Path.files
	mutapath.Path.find
	mutapath.Path.fnmatch
	mutapath.Path.format
	mutapath.Path.format_map
	mutapath.Path.get_owner
	mutapath.Path.getatime
	mutapath.Path.getctime
	mutapath.Path.getcwd
	mutapath.Path.getmtime
	mutapath.Path.getsize
	mutapath.Path.glob
	mutapath.Path.group
	mutapath.Path.iglob
	mutapath.Path.in_place
	mutapath.Path.index
	mutapath.Path.is_absolute
	mutapath.Path.is_block_device
	mutapath.Path.is_char_device
	mutapath.Path.is_dir
	mutapath.Path.is_fifo
	mutapath.Path.is_file
	mutapath.Path.is_mount
	mutapath.Path.is_reserved
	mutapath.Path.is_socket
	mutapath.Path.is_symlink
	mutapath.Path.isabs
	mutapath.Path.isalnum
	mutapath.Path.isalpha
	mutapath.Path.isascii
	mutapath.Path.isdecimal
	mutapath.Path.isdigit
	mutapath.Path.isdir
	mutapath.Path.isfile
	mutapath.Path.isidentifier
	mutapath.Path.islink
	mutapath.Path.islower
	mutapath.Path.ismount
	mutapath.Path.isnumeric
	mutapath.Path.isprintable
	mutapath.Path.isspace
	mutapath.Path.istitle
	mutapath.Path.isupper
	mutapath.Path.iterdir
	mutapath.Path.join
	mutapath.Path.joinpath
	mutapath.Path.lchmod
	mutapath.Path.lines
	mutapath.Path.link
	mutapath.Path.link_to
	mutapath.Path.listdir
	mutapath.Path.ljust
	mutapath.Path.lower
	mutapath.Path.lstat
	mutapath.Path.lstrip
	mutapath.Path.makedirs
	mutapath.Path.makedirs_p
	mutapath.Path.match
	mutapath.Path.merge_tree
	mutapath.Path.mkdir
	mutapath.Path.mkdir_p
	mutapath.Path.move
	mutapath.Path.moving
	mutapath.Path.mutate
	mutapath.Path.normcase
	mutapath.Path.normpath
	mutapath.Path.open
	mutapath.Path.partition
	mutapath.Path.pathconf
	mutapath.Path.posix_string
	mutapath.Path.read_bytes
	mutapath.Path.read_hash
	mutapath.Path.read_hexhash
	mutapath.Path.read_md5
	mutapath.Path.read_text
	mutapath.Path.readlink
	mutapath.Path.readlinkabs
	mutapath.Path.realpath
	mutapath.Path.relative_to
	mutapath.Path.relpath
	mutapath.Path.relpathto
	mutapath.Path.remove
	mutapath.Path.remove_p
	mutapath.Path.removedirs
	mutapath.Path.removedirs_p
	mutapath.Path.rename
	mutapath.Path.renames
	mutapath.Path.renaming
	mutapath.Path.replace
	mutapath.Path.resolve
	mutapath.Path.rfind
	mutapath.Path.rglob
	mutapath.Path.rindex
	mutapath.Path.rjust
	mutapath.Path.rmdir
	mutapath.Path.rmdir_p
	mutapath.Path.rmtree
	mutapath.Path.rmtree_p
	mutapath.Path.rpartition
	mutapath.Path.rsplit
	mutapath.Path.rstrip
	mutapath.Path.samefile
	mutapath.Path.split
	mutapath.Path.splitall
	mutapath.Path.splitdrive
	mutapath.Path.splitext
	mutapath.Path.splitlines
	mutapath.Path.splitpath
	mutapath.Path.startfile
	mutapath.Path.startswith
	mutapath.Path.stat
	mutapath.Path.statvfs
	mutapath.Path.strip
	mutapath.Path.stripext
	mutapath.Path.swapcase
	mutapath.Path.symlink
	mutapath.Path.symlink_to
	mutapath.Path.title
	mutapath.Path.touch
	mutapath.Path.translate
	mutapath.Path.unlink
	mutapath.Path.unlink_p
	mutapath.Path.upper
	mutapath.Path.using_module
	mutapath.Path.utime
	mutapath.Path.walk
	mutapath.Path.walkdirs
	mutapath.Path.walkfiles
	mutapath.Path.with_base
	mutapath.Path.with_name
	mutapath.Path.with_parent
	mutapath.Path.with_poxis_enabled
	mutapath.Path.with_stem
	mutapath.Path.with_string_repr_enabled
	mutapath.Path.with_suffix
	mutapath.Path.write_bytes
	mutapath.Path.write_lines
	mutapath.Path.write_text
	mutapath.Path.zfill
	mutapath.Path.anchor
	mutapath.Path.atime
	mutapath.Path.base
	mutapath.Path.bytes
	mutapath.Path.ctime
	mutapath.Path.cwd
	mutapath.Path.dirname
	mutapath.Path.drive
	mutapath.Path.ext
	mutapath.Path.home
	mutapath.Path.lock
	mutapath.Path.mtime
	mutapath.Path.name
	mutapath.Path.parent
	mutapath.Path.parents
	mutapath.Path.parts
	mutapath.Path.posix_enabled
	mutapath.Path.root
	mutapath.Path.size
	mutapath.Path.stem
	mutapath.Path.string_repr_enabled
	mutapath.Path.suffix
	mutapath.Path.suffixes
	mutapath.Path.text
	mutapath.Path.to_pathlib

	mutapath.MutaPath
	mutapath.MutaPath.absolute
	mutapath.MutaPath.abspath
	mutapath.MutaPath.access
	mutapath.MutaPath.as_posix
	mutapath.MutaPath.as_uri
	mutapath.MutaPath.basename
	mutapath.MutaPath.capitalize
	mutapath.MutaPath.casefold
	mutapath.MutaPath.cd
	mutapath.MutaPath.center
	mutapath.MutaPath.chdir
	mutapath.MutaPath.chmod
	mutapath.MutaPath.chown
	mutapath.MutaPath.chroot
	mutapath.MutaPath.chunks
	mutapath.MutaPath.clone
	mutapath.MutaPath.copy
	mutapath.MutaPath.copy2
	mutapath.MutaPath.copyfile
	mutapath.MutaPath.copying
	mutapath.MutaPath.copymode
	mutapath.MutaPath.copystat
	mutapath.MutaPath.copytree
	mutapath.MutaPath.count
	mutapath.MutaPath.dirs
	mutapath.MutaPath.encode
	mutapath.MutaPath.endswith
	mutapath.MutaPath.exists
	mutapath.MutaPath.expand
	mutapath.MutaPath.expandtabs
	mutapath.MutaPath.expanduser
	mutapath.MutaPath.expandvars
	mutapath.MutaPath.files
	mutapath.MutaPath.find
	mutapath.MutaPath.fnmatch
	mutapath.MutaPath.format
	mutapath.MutaPath.format_map
	mutapath.MutaPath.get_owner
	mutapath.MutaPath.getatime
	mutapath.MutaPath.getctime
	mutapath.MutaPath.getcwd
	mutapath.MutaPath.getmtime
	mutapath.MutaPath.getsize
	mutapath.MutaPath.glob
	mutapath.MutaPath.group
	mutapath.MutaPath.iglob
	mutapath.MutaPath.in_place
	mutapath.MutaPath.index
	mutapath.MutaPath.is_absolute
	mutapath.MutaPath.is_block_device
	mutapath.MutaPath.is_char_device
	mutapath.MutaPath.is_dir
	mutapath.MutaPath.is_fifo
	mutapath.MutaPath.is_file
	mutapath.MutaPath.is_mount
	mutapath.MutaPath.is_reserved
	mutapath.MutaPath.is_socket
	mutapath.MutaPath.is_symlink
	mutapath.MutaPath.isabs
	mutapath.MutaPath.isalnum
	mutapath.MutaPath.isalpha
	mutapath.MutaPath.isascii
	mutapath.MutaPath.isdecimal
	mutapath.MutaPath.isdigit
	mutapath.MutaPath.isdir
	mutapath.MutaPath.isfile
	mutapath.MutaPath.isidentifier
	mutapath.MutaPath.islink
	mutapath.MutaPath.islower
	mutapath.MutaPath.ismount
	mutapath.MutaPath.isnumeric
	mutapath.MutaPath.isprintable
	mutapath.MutaPath.isspace
	mutapath.MutaPath.istitle
	mutapath.MutaPath.isupper
	mutapath.MutaPath.iterdir
	mutapath.MutaPath.join
	mutapath.MutaPath.joinpath
	mutapath.MutaPath.lchmod
	mutapath.MutaPath.lines
	mutapath.MutaPath.link
	mutapath.MutaPath.link_to
	mutapath.MutaPath.listdir
	mutapath.MutaPath.ljust
	mutapath.MutaPath.lower
	mutapath.MutaPath.lstat
	mutapath.MutaPath.lstrip
	mutapath.MutaPath.makedirs
	mutapath.MutaPath.makedirs_p
	mutapath.MutaPath.match
	mutapath.MutaPath.merge_tree
	mutapath.MutaPath.mkdir
	mutapath.MutaPath.mkdir_p
	mutapath.MutaPath.move
	mutapath.MutaPath.moving
	mutapath.MutaPath.mutate
	mutapath.MutaPath.normcase
	mutapath.MutaPath.normpath
	mutapath.MutaPath.open
	mutapath.MutaPath.partition
	mutapath.MutaPath.pathconf
	mutapath.MutaPath.posix_string
	mutapath.MutaPath.read_bytes
	mutapath.MutaPath.read_hash
	mutapath.MutaPath.read_hexhash
	mutapath.MutaPath.read_md5
	mutapath.MutaPath.read_text
	mutapath.MutaPath.readlink
	mutapath.MutaPath.readlinkabs
	mutapath.MutaPath.realpath
	mutapath.MutaPath.relative_to
	mutapath.MutaPath.relpath
	mutapath.MutaPath.relpathto
	mutapath.MutaPath.remove
	mutapath.MutaPath.remove_p
	mutapath.MutaPath.removedirs
	mutapath.MutaPath.removedirs_p
	mutapath.MutaPath.rename
	mutapath.MutaPath.renames
	mutapath.MutaPath.renaming
	mutapath.MutaPath.replace
	mutapath.MutaPath.resolve
	mutapath.MutaPath.rfind
	mutapath.MutaPath.rglob
	mutapath.MutaPath.rindex
	mutapath.MutaPath.rjust
	mutapath.MutaPath.rmdir
	mutapath.MutaPath.rmdir_p
	mutapath.MutaPath.rmtree
	mutapath.MutaPath.rmtree_p
	mutapath.MutaPath.rpartition
	mutapath.MutaPath.rsplit
	mutapath.MutaPath.rstrip
	mutapath.MutaPath.samefile
	mutapath.MutaPath.split
	mutapath.MutaPath.splitall
	mutapath.MutaPath.splitdrive
	mutapath.MutaPath.splitext
	mutapath.MutaPath.splitlines
	mutapath.MutaPath.splitpath
	mutapath.MutaPath.startfile
	mutapath.MutaPath.startswith
	mutapath.MutaPath.stat
	mutapath.MutaPath.statvfs
	mutapath.MutaPath.strip
	mutapath.MutaPath.stripext
	mutapath.MutaPath.swapcase
	mutapath.MutaPath.symlink
	mutapath.MutaPath.symlink_to
	mutapath.MutaPath.title
	mutapath.MutaPath.touch
	mutapath.MutaPath.translate
	mutapath.MutaPath.unlink
	mutapath.MutaPath.unlink_p
	mutapath.MutaPath.upper
	mutapath.MutaPath.using_module
	mutapath.MutaPath.utime
	mutapath.MutaPath.walk
	mutapath.MutaPath.walkdirs
	mutapath.MutaPath.walkfiles
	mutapath.MutaPath.with_base
	mutapath.MutaPath.with_name
	mutapath.MutaPath.with_parent
	mutapath.MutaPath.with_poxis_enabled
	mutapath.MutaPath.with_stem
	mutapath.MutaPath.with_string_repr_enabled
	mutapath.MutaPath.with_suffix
	mutapath.MutaPath.write_bytes
	mutapath.MutaPath.write_lines
	mutapath.MutaPath.write_text
	mutapath.MutaPath.zfill
	mutapath.MutaPath.anchor
	mutapath.MutaPath.atime
	mutapath.MutaPath.base
	mutapath.MutaPath.bytes
	mutapath.MutaPath.ctime
	mutapath.MutaPath.cwd
	mutapath.MutaPath.dirname
	mutapath.MutaPath.drive
	mutapath.MutaPath.ext
	mutapath.MutaPath.home
	mutapath.MutaPath.lock
	mutapath.MutaPath.mtime
	mutapath.MutaPath.name
	mutapath.MutaPath.parent
	mutapath.MutaPath.parents
	mutapath.MutaPath.parts
	mutapath.MutaPath.posix_enabled
	mutapath.MutaPath.root
	mutapath.MutaPath.size
	mutapath.MutaPath.stem
	mutapath.MutaPath.string_repr_enabled
	mutapath.MutaPath.suffix
	mutapath.MutaPath.suffixes
	mutapath.MutaPath.text
	mutapath.MutaPath.to_pathlib

	mutapath.exceptions.PathException
	mutapath.lock_dummy.DummyFileLock
	mutapath.lock_dummy.DummyFileLock.acquire
	mutapath.lock_dummy.DummyFileLock.is_thread_local
	mutapath.lock_dummy.DummyFileLock.release
	mutapath.lock_dummy.DummyFileLock.is_locked
	mutapath.lock_dummy.DummyFileLock.lock_counter
	mutapath.lock_dummy.DummyFileLock.lock_file
	mutapath.lock_dummy.DummyFileLock.timeout

	Indices and tables

	Index

